
Extending Java with String Interpolation Using
ExtendJ

Wilhelm Lundström
F13, Lund University, Sweden

fte13wlu@student.lu.se

Oskar Damkjaer
C15, Lund University, Sweden

dic15oda@student.lu.se

Abstract
String interpolation is a syntactic feature commonly found
scripting languages such as Python and Perl. It can be used
to simplify the code for printing and manipulating strings,
making the code easier to both read and to write. There is
currently no support for this feature in Java (the current
version being Java 11).

In this project, we bring string interpolation to Java by
extending the extendable Java compiler ExtendJ[4]. The im-
plementation is functional and backwards compatible, so
existing code will not be affected by this extension (save for
rare, specific cases).
Our implementation is rather light weight, yet effective.

The full feature of string interpolation is implemented in a
few short files, yet has a significant potential effect on the
way Java code is written.

We evaluate the impact of this feature by analysing how
effectively it could be used in larger Java projects. Look-
ing at open source projects, we examined how much string
interpolation could be used in the projects.

1 Introduction
Many scripting languages have a feature called string inter-
polation which can make some string handling easier. This
allows the programmer to create a string object by expanding
a variable or expression within the string. String interpola-
tion is normally done by using a "$" followed by the variable
name, or "${...}" with an expression inside the brackets. For
instance, a program that prints a welcome message to guests
can written using string concatenation:

System.out.println("Welcome to the

presentation " + title + " " + name)

The code above can be simplified using string interpolation:

System.out.println("Welcome to the

presentation $title $name")

Expanding strings in this way allows developers to more
concisely and legibly manipulate the content, but does not
fundamentally change anything within the Java language.
String interpolation is syntax added to a language as a new
way of using existing features more conveniently. Such syn-
tactic features are commonly referred to as "syntactic sugar".

Course paper, EDAN70, Lund University, Sweden
January 29, 2019.

Our goal for this project is to implement string inter-
polation as a Java language extension using the ExtendJ
Java-compiler. ExtendJ is a Java compiler developed using
the JastAdd[5] meta-compiler. JastAdd generates compilers
from an abstract grammar and reference attribute grammar
specification[8]. JastAdd supports an automatic AST rewrit-
ing mechanism which automatically rewrites parts oft he
AST[7].

The research question which we intend to answer is "Can
Java source code be simplified with string interpolation?".

2 Background
2.1 Choice of Syntax
In order to implement string interpolation and answer our
research question, we need to decide on the syntax used
for interpolating strings. Looking at the way it is done in
languages that have the feature implemented, we decided
on a syntax that allowed for two ways of formulating an
interpolation. The first utilised just the dollar sign followed
by a variable (e.g. "$name"), and would only work for single
variable interpolation. The second added brackets, andwould
allow for more advanced interpolations such as expressions
(e.g. "${rand.nextInt(8) + 10}"). The resulting syntax would
be as follows:

String name = "Harry";

String profession = "WIZARD";

// Without string interpolation

System.out.println("You are a " +

profession.toLowerCase () + ", " +

name);

// With string interpolation

System.out.println("You are a

${profession.toLowerCase ()},

$name");

2.2 Metacompiler Tools
The tools we used to implement string interpolation and to
add the feature to ExtendJ need be accounted for. As men-
tioned in the introduction JastAdd is a tool that allows for
manipulation of the Abstract Syntax Tree (AST). A feature of
JastAdd used in our implementation is the AST-node rewrit-
ing, which allows developers to add features of node classes

1

Course paper, EDAN70, Lund University, Sweden Wilhelm Lundström and Oskar Damkjaer

within the AST. An example use is to enable for example
string multiplication such as:

System.out.println("na"*16 + " batman")

This can be done by rewriting the multiplication expression
(MulExpr), altering its behaviour when the left child is of
type string and the right is of type integer, without altering
the normal function of multiplication expressions.
The parser generator used in ExtendJ is called Beaver[2].

When parsing input beaver can be directed to a specific
goal, it does not always need to parse full programs and
can instead be directed to parse for example only a single
function declaration. Since Beaver can be used in Java code
and JastAdd is compatible with java, the parser can be used
with different goal when managing the AST.

3 Implementation
As stated in section 2.1, our goal for the implementation was
to allow for two kinds of expansions. One using just a dollar
sign and one using a dollar sign in conjunction with brackets.
However, while implementing the simpler of the two, we ran
into a number of problems (further outlined in the following
section). These problems led to the decision to only support
the type of string interpolation that is expressed as "${...}".
As this is an implementation specific detail it does not affect
our research question.

3.1 Single Variable String Interpolation
Our first implementation only allowed a single variable to be
interpolated in a string. The format was to use a $ followed
by a variable to be interpolated.
Our implementation was rather simplistic; we used Jas-

tAdd to analyse string literals to see if they contained "$".
When one was found we looked for a word immediately
following it and in that case assumed that the word was the
name of a variable (if there was just a white space or number
instead of a word we would not do anything with the string).
We then split the string literal into two pieces, one preceding
the "$", the other following whatever variable name followed
the "$". We then parsed the variable using a modified version
of the parser used in ExtendJ. The resulting objects were
then put together using an AddExpr and returned in place of
the original string literal (see fig. 1). However, as previously
stated this implementation had some issues.

Figure 1. Visualisation of a simple AST-node rewrite.

The first problem we encountered concerned punctuation.
Writing "Hello $location!" with the variable being named "lo-
cation" would cause errors as the exclamation mark would
be treated as part of the variable name. Beyond that we
found issues when appending a variable to a word through
interpolation, e.g. "Welcome to Hamlin-$partner" with part-
ner="McGill". There exists cases where we do not want to
interpolate (for instance in "CA$H" the "H" should not be
treated as a variable to be interpolated). Our original rule
was therefore to only interpolate when the "$" was not part
of a word (i.e. it was at the beginning of a string or following
a white space), but fringe cases such as "Hamlin-$partner"
were hard to get around then. A more advanced regular ex-
pression condition could be used to solve this issue, however
this was not the only one we encountered.

Another problem was infinite interpolation. When expand-
ing string interpolations the compiler only checked the if
the string literal contained at least one dollar sign. If it did
contain one, but no word after it, the string could not be
interpolated. If a string was not subject to interpolation, we
returned it as is. This was the source of the problem, as
the unaltered string literal would continuously trigger the
rewrite-mechanism as the $ would remain. This could have
been solved by creating an attribute on the string literals, to
keep track if they gone through a rewrite already or not.

The final problemwe encountered was with the dollar sign
itself. If not followed by a variable, the "$" should not cause
interpolation, so strings like "price: $15.59" and "$" should not
be interpolated. However, in Java a variable name can start
with any letter, ’_’, or ’$’, meaning that strings such as "price:
$$15.59" and "$$" would inadvertently cause interpolation.
This would mean that the use of consecutive $-signs would
have to be escaped ("\$\$"), which in turn would cause major
problems with backwards compatibility.

These problems caused us to change our implementation
goals. It will not be possible to interpolate using the short
form of "$" followed by a variable. Instead, curly brackets
will always be necessary, i.e. "Hello ${location}!". This will
nullify all issues listed in this section and also make the

2

Course paper, EDAN70, Lund University, Sweden

implementation backwards compatible (you will not have
to escape $-signs in strings to use them). The occurrence of
"${...}" in strings is estimated to be quite low, and will hence
not be treated as a compatibility issue.

3.2 Evaluating Expressions
As previously mentioned, string interpolation should be able
to do more than simply replacing variables in strings; it
should be able to evaluate general expressions in strings. To
accomplish this the compiler will need to parse the expres-
sion found inside the brackets when expanding strings.
In practice, this means we go through the string literal

looking for "${" and "}". If those are found (and "}" occurs after
"${"), we split the string literal in three parts. This leaves us
with two string literals on each side of a string we know is
meant to be an expression. To turn this string literal intowhat
ever expression it was meant to be, we import the Java parser
used in ExtendJ with some slight modifications. The parser is
set to parse an expressions instead of a full Java program. The
expression may itself contain a string interpolation, which
the compiler also will rewrite, as the compiler will continue
to rewrite string literals until the string interpolation pattern
is not present. With this expressions we then reassemble an
expanded string by putting the three segments (the string
before "${", the expression inside, and the string after "}") into
a set of AddExprs. Note that after the interpolation we no
longer have a string object, but a set of AddExpr containing
strings and expressions.

As we at this point still only deal with one string interpo-
lation per string as, the string is split at the first occurrence
of "${", the second of the two resulting strings is the split at
the first occurrence of "}", meaning the string will be split
incorrectly if more expressions are in the same string literal.
The next section discusses this problem further.

3.3 Adding Further Features
With an established syntax, the next step in the implemen-
tation was to extend the basic functionality to cover more
use cases. The first being support for multiple interpolations
within a single string literal.

As we split the string literal on the first occurrence of "${}",
any subsequent occurrences would go unnoticed and would
not be interpolated. We therefore added further analysis to
the last part of the original string literal (as that would be
the part that could contain more interpolations). The idea
was then to do string interpolation recursively, treating the
last part of the original string literal as an all new string
literal and evaluating it as such. If the last part was then in-
terpolated, we would simply add the resulting AddExpr as an
argument to the AddExpr in the original string interpolation.

Figure 2. The right recursive AddExpr structure initially
used when adding support for multi-variable interpolation.
The left-most and right-most leaf will always be string literals
(can be the empty string) as a consequence of the implemen-
tation. The expression leaves can be variables, method calls,
etc.

The result would be an enlarged AddExpr tree containing
other AddExpr’s as sub nodes (see fig. 2).
This approach turned out to crash the compiler. As far

as we could tell it appeared to be an issue with giving Ad-
dExpr another AddExpr as its second argument when the
first argument was a string. Our way of solving this was to
change our evaluation process so that instead of generating
a right recursive subtree, it would generate a left recursive
one. AddExprs would then never have another AddExpr as
its second argument, but rather as its first.
To do this we altered the code for evaluating the string

literals so that the evaluation was done from left to right
(i.e. taking the last occurrence of a "}" and splitting on that,
taking the first of the two resulting strings and splitting
on the last occurrence of "${"). This would generate a left
recursive sub tree of AddExpr’s (see fig. 3). This solved a
lot of the troubles we encountered with our initial right
recursive solution. However, after a while we discovered new
problems. In the specific case where the developer would try
to interpolate and concatenate at the same time ("${s1 + s2}",
with s1 and s2 being strings), the compiler would crash.

When faced with a string concatenation it would auto-
matically instantiate a String Builder for performance, when
some forms of AddExpr trees are build this would create
problems, see the following example. Given the following
structure; AddExpr: left: (AddExpr: left: "Hi", right: "s1+s2"),
right: "", the left most leaf in this tree will instantiate a String
Builder that will try to build a string out of that and all fol-
lowing leaves. However, when concatenating two strings (in
the right AddExpr), another string builder is initiated. The
first String Builder tries and fails to append the second one,
as it is not a string. This byte generation issue was resolved
in ExtendJ by the current maintainer, Jesper Öqvist and the
bug is no longer present in our implementation.

3

Course paper, EDAN70, Lund University, Sweden Wilhelm Lundström and Oskar Damkjaer

3.4 Issues with nestled expressions
As we want to support arbitrary expressions inside the string
interpolations we want to support an arbitrary number of re-
cursive interpolations. When changing our rewrite condition
to correctly find multiple string interpolations in the same
string literal, we added support for some nesting of string
interpolation. It was done by keeping track of the current
nesting depth and to make sure the expression was not cut
short by splitting at the first occurrence of "}". The problem
was that to make the complete string literal register as a
single string literal without changing the parser, we would
need to escape the quotation character as it would otherwise
end the string. This problem makes it very impractical to
write nested string interpolations as many characters would
need to be escaped. A solution for this problem is proposed
in the Future Work section.

4 Evaluation
In order to evaluate our implementation as it relates to re-
search question the best possible procedure would have been
to carry out a thorough investigation into how useful the fea-
ture would be for developers, in terms of legibility and ease
of writing. However the work involved in such a user study
far exceeds the time constraints of this project. What we
have done instead is to start from the base assumption that
string interpolation, at least to an extent, makes code easier
to read and write. We base this on personal and anecdotal ex-
perience, as well as on the prevalence of the feature in other
languages. From there the evaluation is done by analysing
larger Java code bases, seeing to what extent string interpo-
lation could be applied in practice.

4.1 Applicability in existing code bases
According to Qualitas Corpus[11] the project Ant[1] version
1.8.4 by Apache has 105007 non-comment, non-blank lines of
code. We downloaded the project and used grep to look for
the + sign in the source catalogue matching 5107 rows. These
rows where filtered down to 3324 by making sure they also
contained a quotation mark and/or a toString() call, implying
the line contained some form of string concatenation that
string interpolation could simplify. We examined two other
projects this way and tallied the results in table 1. The high
percentages of possible string concatenations imply string
interpolation could be a well used feature.

Project hSQLdb
database

Ant
build-tool

JWebMail
email-client

Lines 123,268 105,007 8,212
% with string-concat 2.3% 8% 10%

Table 1. Results of applicability analysis

4.2 Backwards Compatibility
Our implementation of string interpolation requires the
marker ${ inside a string, which could lead to backwards
compatibility issues. To estimate how often the marker oc-
curs in Java code we looked through the same the Ant source
code as in the previous subsection. The only matches we
found were from a custom XML parser which added the fea-
ture of simple variable insertion for project information in
XML (see src/main/org/apache/tools/ant/ProjectHelper.java
in Ant 1.8.4). This implies that the ${ marker is at least rel-
atively unused in Java strings and that string interpolation
could be a welcome and usable feature in java, as it might
be able to replace parts of the custom parser.

4.3 Threats to validity
The method for finding lines which might use string con-
catenation results in some false positives as checking for
lines which use the + symbol which contain a string does
not mean the row contains a string concatenation. The string
could be unrelated from the addition for example:

methodCall("input", 1 + 2)

Some of the matches might not be possible to be rewritten
as string interpolations in a meaningful way, which is the
case if the concatenation is used to split a very long line into
smaller ones. With the help of a powerful code formatting
tool, that could join strings that are split due to line length,
some of these false positives could be removed.
Another threat to validity is the small sample size of

both the backwards compatibility check and the applicability
check. In the applicability check three projects where used
and they can’t represent general java code, only a part of it.
Despite these threats to validity we think that the answer to
our research question is yes, it is useful to extend Java with
string interpolation, since there is a high percentage of lines
of code that could be simplified.

5 Related Work
Öqvist and Hedin [10] implemented Java 7 by extending the
JastAdd extensible Java compiler. The development of that
compiler extension does in some ways mirror ours, but at
a larger and more rigorous scale. Apart from the scale of
the project, the largest differentiation is that their project
has a set goal, the final product is already specified. Our
work is exploratory and a large part of it is meant to illumi-
nate our thought process in picking syntax, which language
constructs to support and how to best extend ExtendJ. This
difference shows in the evaluation sections, their work is
an implementation of a specification and therefore compar-
ing it to other implementations is natural. Compared to our
paper it gives a more thorough explanation of the ExtendJ
compiler.

4

Course paper, EDAN70, Lund University, Sweden

Reliable and Automatic Composition of Language Exten-
sions to C by Kaminski, Kramer, Carlson, and Van Wyk [9]
describes another extensible compiler, AbleC, this one for
the C language. The main idea of AbleC is to enable a pro-
grammer that is not an expert in compilers to import and
compose new language features in the same way they would
do with libraries. An developer can create an extension in
the Silver [12] language, extending but not changing the host
language. The AbleC compiler makes sure that many new
features can automatically be combined into a new dialect
of the host language with an unambiguous grammar.
Some notable differences between a language extension

to ExtendJ and AbleC are that it is easier for a programmer
to integrate and combine features with AbleC as they can
be imported and combined in a program freely. A proposed
feature could easily be tested by a wide range of users before
being made a part of a language. ExtendJ on the other hand
has greater power to change the base language and create
more powerful and transforming features.

From our perspective as extension developers the require-
ments for a new extension are more flexible since they won’t
have to be composed with any other feature. ExtendJ also
leverages aspect oriented programming which means adding
a feature or extension does not require the same amount of
knowledge of the complete compiler.

6 Future Work
Developing a compiler is a never ending task. During our
work with this project we thought of some interesting ways
to improve the current implementation.

6.1 Usability features
The compiler could detect if a string contains "${" but not
an end bracket and issue a warning to the developer. Before
implementing this feature, a study into whether the "${"
marker is common in Java programs as it could cause many
unwanted warnings in that case.

Using a blank space between the $ and the { in the marker
would with the current implementation prevent the string
from being expanded. An improvement would be to either
ignore some white space between the symbols or to make
the compiler warn about it.

6.2 Parsing
The current implementation uses a parser unmodified from
the standard ExtendJ parser and adds the new functionality
by rewriting the AST-node for string literals. This implemen-
tation is sub optimal as could in niche cases create backwards
compatibility issues and it is not as powerful. If string inter-
polation was implemented in a new kind of the string literal,
similar to the way it is done in Python, that would remove
the possibility of backwards compatibility issues. It would
also allow nesting interpolations of arbitrary depth:

"${firstname + " ${lastname}"}"

Normally the above example could cause a compile time
error since the parser does not know this text is meant to be
a single string. It will instead interpret it as two strings with
some unexpected symbols in between them, an error that is
impossible to prevent without changes to the parser.
A new kind of string literals would also allow for more

powerful future developments; the new parser could for ex-
ample support special formatting of the expanded variables.
Using a new parser would also make it easier to support the
more convenient syntax of a single dollar sign for single vari-
able interpolation. It would also make the compiler slightly
easier to understand since all parsing is done in the same
step.
We note that this change to the implementation would

be a suitable update to go along with the addition of "raw
string literals" that are to be added to Java with Java 13[6].

6.3 Automatic refactoring tool
An interesting future development related to this string lit-
eral compiler extension would be to create a tool that finds all
instances of string concatenations that could be rewritten as
string interpolations and automatically refactor. The linting
tool ESLint[3] for JavaScript includes similar functionality,
when run it will transform the first line of the following
example into the second.

"Hello , " + name + "!";

`Hello , ${name}!`;

6.4 Syntax highlighting
Without syntax highlighting of the interpolated expression
some of the readability gains we want to make with string
interpolation are lost. This can be seen in the example in the
previous subsection (automatic refactoring). The reader will
have a harder time distinguishing which word is a variable
versus part of the string in the second example, as the vari-
able is not highlighted differently to the rest of string. An
interesting project would be to expand the syntax highlight-
ing tools to correctly handle string literals containing string
interpolations.

7 Conclusion
We added string interpolation to Java by building a function-
ing compiler extension to ExtendJ. It expands general ex-
pressions in strings found between the two markers "${" and
”}". In order to answer our research question we evaluated
our implementation by checking for string concatenations
in three open source projects, and found that it could be
applicable in large parts of the code bases. This would lead
us to conclude that the addition of string interpolation to
Java could simplify some code bases. However, the method
of evaluation is somewhat crude and does not fully consider

5

Course paper, EDAN70, Lund University, Sweden Wilhelm Lundström and Oskar Damkjaer

whether or not developers would find the code easier to read
and write. To answer our research question conclusively we
would need a larger study and better code formatting tools
to know for sure, but our initial findings look promising. We
think string interpolation could be useful in Java, especially
in unit-tests, where we found a high concentration of string
concatenations.

In the future the extension could be improved to include a
change of the ExtendJ parser, that would allow for more ad-
vanced features, full backwards compatibility and unlimited
nesting of string interpolations. We think a tool that would
automatically rewrite string concatenations into string in-
terpolations when applicable could be a really useful way to
introduce the feature to new users and a great way to keep
a code base consistent.

Acknowledgments
We would like to thank our supervisor and the maintainer
of ExtendJ, Jesper Öqvist for his detailed feedback, his help
when we got stuck and all the new vim-tricks he taught us.

References
[1] Apache ant. URL https://ant.apache.org/.
[2] Beaver - a lalr parser generator. URL http://beaver.sourceforge.net/.
[3] Eslint - the pluggable linting utility for javascript and jsx. URL https:

//eslint.org/.
[4] Extendj - the jastadd extensible java compiler. URL https://www.

extendj.org/.
[5] Jastadd.org. URL http://jastadd.org/web/.
[6] Java version 13 release notes. URL https://www.oracle.com/

technetwork/java/javase/itanium6u13-136041.html.
[7] Torbjörn Ekman and Görel Hedin. Rewritable reference attributed

grammars. In ECOOP 2004 - Object-Oriented Programming, 18th Eu-
ropean Conference, Oslo, Norway, June 14-18, 2004, Proceedings, pages
144–169, 2004.

[8] Görel Hedin. Reference attributed grammars. Informatica (Slovenia),
24(3), 2000.

[9] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. Re-
liable and automatic composition of language extensions to c: The
ablec extensible language framework. Proc. ACM Program. Lang., 1
(OOPSLA):98:1–98:29, October 2017. ISSN 2475-1421.

[10] Jesper Öqvist and Görel Hedin. Extending the jastadd extensible java
compiler to java 7. In Proceedings of the 2013 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, Stuttgart, Germany, September 11-13,
2013, pages 147–152, 2013.

[11] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. Qualitas corpus: A curated
collection of java code for empirical studies. In 2010 Asia Pacific Soft-
ware Engineering Conference (APSEC2010), pages 336–345, December
2010.

[12] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver:
An extensible attribute grammar system. Sci. Comput. Program., 75
(1-2):39–54, 2010.

6

https://ant.apache.org/
http://beaver.sourceforge.net/
https://eslint.org/
https://eslint.org/
https://www.extendj.org/
https://www.extendj.org/
http://jastadd.org/web/
https://www.oracle.com/technetwork/java/javase/itanium6u13-136041.html
https://www.oracle.com/technetwork/java/javase/itanium6u13-136041.html

	Abstract
	1 Introduction
	2 Background
	2.1 Choice of Syntax
	2.2 Metacompiler Tools

	3 Implementation
	3.1 Single Variable String Interpolation
	3.2 Evaluating Expressions
	3.3 Adding Further Features
	3.4 Issues with nestled expressions

	4 Evaluation
	4.1 Applicability in existing code bases
	4.2 Backwards Compatibility
	4.3 Threats to validity

	5 Related Work
	6 Future Work
	6.1 Usability features
	6.2 Parsing
	6.3 Automatic refactoring tool
	6.4 Syntax highlighting

	7 Conclusion
	Acknowledgments
	References

