
Design By Contract Implementation For ExtendJ

Martin Lindström
Department of Computer Science, Lund University,

Sweden
dat15mli@student.lu.se

Jakob Hök
Department of Computer Science, Lund University,

Sweden
dat15jh1@student.lu.se

Abstract
The paper demonstrates how Design By Contract (DBC)
was integrated into the aspect-oriented Java compiler
ExtendJ by using annotations. The scope of the imple-
mentation was limited to only include preconditions, i.e.,
only method-input validation. Adding DBC into Java,
is a handy way of validating execution and also to im-
prove readability. Therefore, DBC is a desirable feature
to implement. ExtendJ makes use of aspect-oriented pro-
gramming to compile Java code. Extending the compiler
was therefore convenient and allowed the implementation
to conform to the open-closed principle. The precondi-
tions’ byte code was inserted before the method’s or
constructor’s byte code. Hence, the precondition vali-
dation is run before the method’s code. An exception
is thrown if any precondition is not met. In the end,
the extension supports preconditions NotNull, MinValue,
MaxValue, Not and arbitrary preconditions with the
annotation Requires.

1 Introduction
Contracts, as most often referred to, is an agreement
between two parties; the contract is commonly formed
between an employer and an employee. Each party has
to live up to the agreed requirements of the contract.
This is very useful because there is a mutual benefit of
knowing what to expect from one another.

Design By Contract (DBC) is this concept applied to
software. The term was invented by Bertrand Meyer in
1992 through his own designed programming language
Eiffel [5]. A contract within DBC is instead formed
between a caller and callee of a method or a function. The
usefulness of these contracts shows itself when a contract
is broken. Either the caller has provided invalid input
to the method, or the callee has returned invalid output
from the method. The contracts enable a decoupling of
these types of runtime checks while also making it easier
to know where in the program such an error occurred.
Meyer separates a contract into three pieces, namely
being:

∙ Preconditions : The requirements for the caller to
fulfill

Course paper, EDAN70, Lund University, Sweden

January 28, 2019.

∙ Postconditions : The requirements for the callee
to fulfill

∙ Invariants : A condition for an object’s state that
needs to be true at all times.

The routine when executing any method is to first
check all preconditions from the parameters. Then, the
method itself is run, with the knowledge of every param-
eter being valid. Lastly, before returning to the caller,
the postconditions is validated. This ensures that both
the caller and the callee receive proper data from one
another. If no exception is thrown in the process, both
the caller and callee meet the conditions of the contract.

If instead any condition of the contract is not met, it
is an easy task to tell whether the error originates from
the caller or callee.

The extent of this paper will be limited to implement-
ing preconditions into a Java compiler named ExtendJ
[6]. Specifically, the preconditions targeted are NotNull,
MinValue, MaxValue, Not and Requires. The first four
represent predefined and reusable preconditions; the last
one, Requires, is instead implemented to enable arbitrary
preconditions for the programmer to define.

To declare preconditions in the Java code, annotations
will be used. Any precondition annotation will serve as
additional data to the compiler. During compilation,
this data can be used to generate byte code for the
annotation’s contained precondition. Any precondition
byte code will be assured to execute before its respective
method.

ExtendJ is an aspect-oriented compiler, which has full
support for the Java language. Therefore, the project
can focus only on implementing the precondition func-
tionality while using ExtendJ’s existent implementation.

2 Motivating example
As a Java programmer, one has most certainly stumbled
upon scenarios where methods become bloated of exten-
sive input parameter checking. Since the Java language
is rather verbose in its nature, methods that are intended
to be a couple of lines of code can easily become twice the
size. Consider the simple piece of code in Listing 1; the
method sumDice takes two die rolls as input parameters
and returns the sum as output where 𝑎, 𝑏 ∈ {1, ..., 6}.

1

Course paper, EDAN70, Lund University, Sweden Martin Lindström and Jakob Hök

Listing 1. Method that returns the sum of two dice
rolls.

public int sumDice(int a, int b) {

if (a > 6 || a < 1 || b > 6 || b < 1) {

throw new Exception();

}

return a + b;

}

The if-block within sumDice is not part of the method’s
actual functionality and can make it harder to interpret,
not only the implementation, but also the purpose of the
method. One way to remove the undesired if-block is to
apply DBC. This will decouple the parameter validation
from the method body to instead express it as a contract
carrying preconditions. The modified example shown in
Listing 2 displays this by using Java’s native annotations,
which is attached to the parameters of the function.

Listing 2. Same functionality as the method in Listing
1 but without internal if-check.

public int sumDice(

@MinValue(1) @MaxValue(6) int a,

@MinValue(1) @MaxValue(6) int b) {

return a + b;

}

3 Dealing with inheritance
As Meyer states regarding DBC [5], an issue emerges
when contracts are going to be applied to subtypes which
intend to override the original method’s declaration.
Imagine 𝐵 is a subtype of 𝐴, and 𝑆 is a module that
calls 𝐴’s method 𝑚(). When 𝑆 calls 𝐴.𝑚() there is no
way for 𝑆 to tell if 𝐴 actually is an instance of 𝐵, because
of the fundamental rules of object-oriented programming.
Therefore, if 𝐵 modifies the precondition contracts of
𝑚(), 𝑆 will still expect its input to 𝑚() to be according
to the rules of 𝐴, not 𝐵, which may lead to unintended
behavior.
Meyer proposed a solution for this, which is to use

the logical OR-operator across all redeclarations of a
precondition. In practice, this means that a precondition
for a method can not become more strict when that
method is overridden. The rules to obey for the caller
can only be loosened, not strengthened. This ensures that
a caller does not have to know about which subtype its
callee is and may use the precondition in the expected
type. Cofoja and JML are two separate examples of
DBC-featured Java compilers that have this functionality
implemented [2] [3].
The compiler of this project handles inheritance in a

simpler manner by letting preconditions for a method be

Figure 1. A UML diagram where all classes will pass
the compilation except D.

stated only once and not be loosened by subtypes. The
following three rules are introduced to handle subtypes:

1. A precondition can not be redeclared or modified
from the original.

2. A precondition must be declared in the class where
the method is first introduced.

3. Any subclass inherits the preconditions for a method,
no matter whether the inherited method is abstract
or not.

To illustrate these rules with an example, Figure 1
shows a situation of four classes and their relation to
each other in terms of inheritance. By looking at each
class individually, one can conclude that:

∙ 𝐴 passes the set rules, because it introduces 𝑚()
together with its precondition @MinValue.

∙ 𝐵 and 𝐶 also pass the rules. Additionally, they
both inherit the precondition defined in 𝐴, accord-
ing to rule 3.

∙ 𝐷 does break rule 1 and 2 because it tries to modify
the preconditions of 𝑚(), while not being the class
that introduces 𝑚().

To fix the conflict that occurs in 𝐷, the most natural
approach would be to lift up the @MaxValue onto 𝐴 so
that the signature becomes
m(@MinValue(0) @MaxValue(5) int n).

3.1 Shared method signature across ancestors

Since the compiler forces preconditions to be defined
only in the highest ancestor, a new problem emerges.
That is when a method in a subclass is inherited from
multiple ancestors. A simple example, shown in Figure 2,
would be to have two separate interfaces 𝐴 and 𝐵, with
a common abstract instance method 𝑚(𝑖𝑛𝑡 𝑛). Let 𝐶 be
a concrete class that implements the two interfaces, and
thus implements 𝑚.

2

Short Title Course paper, EDAN70, Lund University, Sweden

Figure 2. This situation causes a compile time error,
because the precondition of 𝐶.𝑚(𝑖𝑛𝑡 𝑛) is ambiguous.

Both interfaces are allowed to define their respective
preconditions since they both introduce the method 𝑚.
But if 𝐴 and 𝐵 have defined their preconditions for
𝑚 differently, there will be a collision in 𝐶, because a
caller of e.g., 𝐴.𝑚(𝑖𝑛𝑡 𝑛) would not know anything about
𝐵.𝑚(𝑖𝑛𝑡 𝑛). The standard Java compiler ’javac’ would
not throw any compiler errors, so the extended compiler
of this project has to define a solution for this scenario.
The chosen solution to this problem is to throw a

compile error if any of the highest ancestors states any
precondition. In the example, it means that the only way
𝐶.𝑚() will pass compilation, is if 𝐴 and 𝐵 removes their
preconditions for 𝑚.

4 Arbitrary preconditions
The preconditions earlier presentented has a clear mean-
ing and works well for primitive types; however, in a
Java program there are often methods taking in more
complex types as parameters. Therefore an annotation
@Requires has been added. The annotation is attached
to an entire method takes in a string array as its own
parameter, like Listing 3 is showing.

Listing 3. divisible acts as a precondition for divide to
ensure dividing whole numbers has no remainder.

@Requires({"divisible"})

int divide(int numerator, @Not(0) int

denominator) {

return numerator / denominator;

}

boolean divisible(int numerator, int denominator)

{

return numerator % denominator == 0;

}

The string array parameter to Requires is pointing
to the names of other methods, like divisible in the
example. The requirement of such a method is that the
parameters to it need to match the ones of the Requires-
annotated method and also return a boolean type. The
compiled program is then forced to run the boolean

methods referenced to through the annotation, before
running the method itself. Therefore, there is a possibility
of expressing arbitrary preconditions.

4.1 Overriding the boolean methods

In order to make these arbitrary preconditions as useful
as possible, there is an exception regarding the strict
rule of not allowing precondition overriding. All boolean
methods Requires points to, are allowed to be overrid-
den in subclasses; however, the Requires-signature itself
must not be changed, i.e., the string parameters in the
annotation will remain the same by following the rules
explained in the last section.
The reason for this decision is to be able to incorpo-

rate attributes that the superclass does not have. The
added functionality a subclass usually comes with will
in some cases require a modification to checking internal
state. Therefore, subclasses can choose their own way
of checking their instance attributes by overriding the
boolean precondition methods.

The task for the programmer is consequently to verify
that these boolean methods do not possess any state-
ful behaviour; also, if overridden, the boolean meth-
ods should not be made stricter towards the annotated
method’s caller.

5 Implementation of the preconditions
ExtendJ is in its entirety built with a metacompiler called
JastAdd which makes it the main tool for achieving the
DBC extension. Jastadd works by generating Java code
for the compiler [6]. The generated code can then be
executed to compile any Java file. In addition to JastAdd
code, several lines of native Java code was written which
do nothing more than defining the annotations used for
the preconditions. Other than that, JastAdd was used
exclusively to write to extension.

5.1 Generating the byte code

The fundamental rule across all precondition checks
is that they need to be executed before the method
itself. The idea is therefore to add a hidden code snippet
before the method’s actual code, exactly like Listing 1
shows. Like regular Java compilation, ExtendJ works
by generating byte code. The DBC-extension generates
additional byte code for every method- and constructor
declaration, which handles the contract-based code. As
an example, the parameter precondition @NotNull will
produce the Java code snippet displayed in Listing 4
when attached to an Object obj. The produced Java
code is then what generates the extra byte code when
completing the compilation.

3

Course paper, EDAN70, Lund University, Sweden Martin Lindström and Jakob Hök

Listing 4. Code snippet generated at compile time when
@NotNull is attached to Object obj.

if (obj == null) {

throw new PreconditionViolationException(

"Argument ’obj’ must not be null");

}

Designing this functionality into ExtendJ was achieved
by making use of the refined keyword in JastAdd. Refin-
ing a method simply means to modify its implementation
while still having the option to call the original method
from the modified version. One can see it as overriding a
method in Java. When implementing the DBC compiler,
this was taken advantage of by refining the byte-code
generation for constructors and methods. This enabled
the compiler’s code to conform to the open-closed princi-
ple, i.e., “open for extension, but closed for modification”
[4]. There was no need to modify existing ExtendJ code,
i.e., not be forced to introduce dependencies to the DBC
extension. ExtendJ was rather used as an API to call
existing functions and refine methods in the compiler to
modify them to match DBC-featured behaviour. This
coincides well with what Öqvist explains regarding the
extensibility of ExtendJ [6].

6 Evaluation
Performing a thorough evaluation of the compiler can
be achieved by having solid test coverage. During the
working process, unit tests were written and verified for
each new addition of functionality. The unit tests covers
both compilations expected to fail, as well as runtime
tests verifying correct behaviour of preconditions.
In addition to unit tests, example code taken from

Cofoja’s repository were used. The example code were
rewritten to use this project’s precondition. This was
done with the goal in mind order to make a comparison
between an existing DBC-featured compiler.

The time scope of this project was 400 man-hours split
between two individuals. If more time were given, the
project could be extended to a larger degree by imple-
menting the remaining parts of DBC. As this point, the
number of code lines is measured to be 415 for JastAdd,
and 39 for Java. The measurements were retrieved by us-
ing the terminal-based program cloc. Since cloc has no
support for JastAdd code, the files had to be temporarily
renamed to the have the .java-extension. The program
then evaluates the files as being Java code, which makes
no difference since the syntax is similar.
The main time consumer for the project’s progress

was to get used to ExtendJ, i.e., using the existing func-
tionality correctly. For someone who is more familiar
to ExtendJ, the implementation would go considerably

quicker. Aside from that, this project had a solid work-
flow and reasonable difficulty level.

7 Related work
Not too surprisingly, a number of third party DBC im-
plementations for Java already exists. Cofoja, as an
example, was developed by Nhat Minh Lê during his
internship att Google in 2010 [2]. Syntactically this is
similar to the implementation of this project, but Cofoja
has more thorough support for arbitrary preconditions
by letting a boolean expression be expressed as a string
in their own predefined annotation @Requires. For in-
stance, in a stack data structure, the peek() can be
provided with @Requires("size() > 0") as a precon-
dition. Implementing this feature into the compiler of
this project was considered, but dropped because the
scope require time beyond what was planned.

An example of another approach regarding design is
Java Modeling Language (JML) [3]. Instead of using
Java annotations, JML parses the contract-related code
from regular code comments, meaning that a different
Java compiler would process the code without even pars-
ing the preconditions as part of the code. Therefore the
code has the potential advantage of not directly being
dependent on the JML compiler.
Aside from another choice of syntax, the DBC im-

plementation is similar to the compiler of this project
because both build a type checked abstract syntax tree
(AST). The AST is then attached to the rest of the code’s
tree. Finally, the new AST is responsible for generating
the byte code, just like this project’s compiler.

Both JML and Cofoja uses their own compiler for their
intentions. A project named jContractor has achieved
DBC for Java without writing a compiler. Instead, they
load the class files with the DBC extension, and then
execute the program just like any other program. [1].

Instead of using annotations, jContractor uses method
names as key, e.g., for a method named m, the precon-
dition would be named m_Precondition. A program
called main can then be run in the command line by sim-
ply typing java jContractor main arg1 arg2 arg3.
jContractor has also support for running the program
without the DBC features for lower execution time.

However, jContractor was written around the time
when its report were published, in 2002. It does not
seem to be a recent version of the program. Most likely,
JContractor was discontinued and not compatible with
modern Java versions.

4

Short Title Course paper, EDAN70, Lund University, Sweden

8 Conclusion and Future Work
This project includes a partial implementation of the
DBC-concept by extending the Java compiler ExtendJ.
The usage of annotations as preconditions not only in-
creases the readability of the code, but also removes any
if-checks required to verify valid input. As a result, the
code becomes less bloated. The programmer, both as a
writer and a reader, can focus on the actual functionality
of the method or constructor.

Annotations enables additional possibilities. Since the
Java language already supports syntax for annotations,
declaring any preconditions in the code will not break
the compilation when using another compiler, e.g., javac.
Naturally, any other compiler would completely ignore
any preconditions by not generating the byte code.

As the evaluation clearly displays, extending an aspect-
oriented compiler with preconditions can be done by
using the existent code base to a high degree; the newly
introduced lines of code is therefore of a comprehensible
amount. The current implementation of @Requires is
limited to referencing a method name. A future improve-
ment can be to implement usage of arbitrary boolean
expressions, stated directly in the annotation itself, e.g.,
Requires("x > 0"), just like Cofoja has achieved [2].
If one is ambitious, future work is to develop the other
features of DBC, i.e., postconditions and invariants.
As a final addition to this DBC extension, it would

be beneficial to be able to compile code without precon-
dition checking. This applies if the programmer is using
preconditions only for debugging, and not catching the
precondition errors in the production code. An addition
like this would be useful when doing a stable release
of a program, in order to achieve a slight performance
increase.

Acknowledgments
This computer-science project was part of a school as-
signment at Lunds Tekniska Högskola (LTH). As we
are students who have recently been introduced to the
design and implementation of compilers, this project was
a very educative and entertaining way of getting deeper
knowledge within the area.

We want to thank Görel Hedin for being an instructive
supervisor by helping us drive the project in the right
direction. The stepwise, weekly feedback we received was
valuable to us to make the compiler work as intended.

The first two weeks of the project was demanding
because we had to get accustomed to the ExtendJ com-
piler. We thank Jesper Öqvist, PhD student at LTH,
who helped us to get a basic understanding of ExtendJ.
The strategies he proposed for solving our issues spared
us hours of potential frustration.

References
[1] Parker Abercrombie and Murat Karaorman. 2002. jContractor:

Bytecode instrumentation techniques for implementing design
by contract in Java. Electronic Notes in Theoretical Computer

Science 70, 4 (2002), 55–79.

[2] Nhat Minh Lê. 2011. Contracts for java: A practical frame-
work for contract programming. Technical Report. Google

Switzerland GmbH.

[3] Gary T Leavens and Yoonsik Cheon. 2006. Design by Contract
with JML. (2006).

[4] Robert C Martin. 1996. The open-closed principle. More C++
gems 19, 96 (1996), 9.

[5] Bertrand Meyer. 1992. Applying’design by contract’. Computer

25, 10 (1992), 40–51.

[6] Jesper Öqvist. 2018. ExtendJ: extensible Java compiler. In 2nd
International Conference on Art, Science, and Engineering of

Programming, Programming 2018. Association for Computing
Machinery (ACM), 234–235.

5

	Abstract
	1 Introduction
	2 Motivating example
	3 Dealing with inheritance
	3.1 Shared method signature across ancestors

	4 Arbitrary preconditions
	4.1 Overriding the boolean methods

	5 Implementation of the preconditions
	5.1 Generating the byte code

	6 Evaluation
	7 Related work
	8 Conclusion and Future Work
	Acknowledgments
	References

