
Declarative Program Analysis and Interpretation for
AttoL

Anton Göransson
D14, Lund University, Sweden

dat14ago@student.lu.se

Abstract
I have implemented an interpreter for a small object-oriented
language called AttoL. I then experimented with different
kinds of program analysis. This was all done using JastAdd,
which makes it possible to write declarative code. The idea
is that the interpreter will be used for experimenting with
declarative program analysis with attribute grammar since
it has not been done that much before. I then evaluated my
implementation by comparing program execution speed and
source lines of code to the original AttoL implementation.
The results were positive and I definitely think that JastAdd is
a viable option for implementing program analysis. Because
of JastAdd’s modularity is easy to add new functionality
without having to change old one, creating a maintainable
and decoupled system.

1 Introduction
In this paper I will describe how I implemented an interpreter
and program analysis for AttoL using JastAdd. JastAdd is
a java-based system used for constructing compilers and it
supports reference attributed grammars (RAG) [4]. RAG is
an extension to attribute grammar that allows attributes to
be references in the attribute grammar tree [3]. JastAdd has
been used before to implement object-oriented languages,
an example is the implementation of Oberon-0[2]. It is also
a small language with many features, similarly to AttoL.

The goal of the paper is to analyze how program analysis
can be written with a declarative approach using attribute
grammar (AG) and decide how suitable JastAdd is for doing
this. I first created the groundwork (the interpreter) to allow
experimenting with program analysis written declaratively
using AG. It has not been experimented with much and if I
can create groundwork that is stable enough there might be
new insights with further experimentation.
I then implemented some different analyses and because

of JastAdd’s modularity it was simple to add them to the
existing program that I had written. The definite assignment
analysis was implemented with ca 70 source lines of code
and I did not have to modify any existing code. Most of the
time was spent on the interpreter to make sure it was stable.

Course paper, EDAN70, Lund University, Sweden
January 23, 2019.

2 Background
In this section I will introduce and desribe the different tools
and systems that I used.

2.1 JastAdd
JastAdd is an object-oriented compiler generator system that
supports both imperative and declarative approaches. Be-
cause of its object oriented focus it is very modular and it is
simple to add a new feature in it’s own file without modify-
ing the existing system. The pros of supporting declarative
attributes are that the order of computations does not need
to be defined.
JastAdd supports on-demand evaluation. This is what al-

lows the aspects to be so decoupled. In JastAdd the abstract
syntax is modeled by a class hierarchy. For each class Java
code is generated and these classes are called AST classes as
they model a node in the abstract syntax tree. Some of the
key features of JastAdd are described below.

2.1.1 Aspects
In an aspect file you can declare intertype declarations for
AST classes. Intertype declarations appear in the aspect file
but they belong to an AST class. JastAdd reads the aspect
files and interweaves the intertype declarations to the cor-
rect AST classes. The intertype declarations can be regular
Java methods, Java Fields and attribute grammars constructs
such as equations. Since JastAdd caches the return value of
equations they are typically used when the result will not
change and Java methods are used when the return values
can change during run time.

2.1.2 Reference Attribute Grammar (RAG)
JastAdd supports RAG which allows writing of declarative
code for computations. Each computation is defined by at-
tributes and equations. Each equation can either be inherited
for sending information down the tree or synthesized for
sending information up the tree[4]. Contrary to plain AG
where all attributes are values RAG allows attributes to ref-
erences to other nodes. It does not matter where they are in
the tree. The reference nodes can be dereferenced to obtain
the value of the node referred to. This allows for direct links
between nodes[3].

1



Course paper, EDAN70, Lund University, Sweden Anton Göransson

coll Set<ErrorMessage> Program.errors()
[new TreeSet<ErrorMessage>()]
with add root Program;

IdUse contributes error
("symbol '" + getID() + "' is not declared")
when decl().isUnknown()
to Program.errors() for program();

Figure 1. First a collection attribute is defined on program,
declaring a treeset containing errormessages. Then a con-
tribution is declared, contributing to the collection when
decl.isUnknown() equals true.

2.1.3 Circular Definitions
JastAdd supports writing circular definitions declaratively
and it is not necessary to code when the iteration should take
place. Attributes handles this. It allows circular attributes
to be freely combined with other modules. The circular at-
tributes are calculated using fixed-point iteration. When
defining a circular attribute you explicitly define it as circu-
lar and give it a starting value.

2.1.4 Collections
It is possible to define a collection attribute on a ASTN-
ode. Other ASTNodes can then contribute to this collection
through contribute statements. JastAdd performs a survey
of the AST searching for contributions to the collection. An
example used in my program is shown in figure 1.

2.1.5 Nonterminal Attribute
JastAdd allows defining AST nodes by equations. These are
called nonterminal attributes (NTA). They are similar to
both nodes and attributes since it can have attributes and
it is defined by equations. NTA’s refer to a new sub tree
corresponding to predefined types and methods. I have for
example followed the null-object pattern when handling
unknown function declarations. The null object pattern is
used for handling declarations that might be null or unde-
fined. By encapsulating it in an object, in our case a NTA we
avoid direct comparison with null and allows for easier error
handling[5].

2.2 AttoL
AttoL is a small object-oriented language1. An AttoL pro-
gram consists of a sequence of statements. AttoL supports a
lot of common program features. For example, if and while
statements, arrays, variable, class, and function declarations
and assignments and dynamic typing.

When a new class is instantiated all the statements inside
the body block is ran. A small program, taken from AttoVM
1AttoVMWeb page, http://sepl.cs.uni-frankfurt.de/teaching/attovm.en.html

class C(int x) {
int s = x;
int size() {

return s;
}

}

obj counters = [[], C(1), "foo"];
int i = 0;
while (i < counters.size()) {

print(counters[i].size());
i := i + 1;

}

Figure 2. Small AttoL example program, showing support
for many of the language’s features

webpage, covering many of the language’s features such as
classes, initialisers, literal arrays, strings, dynamic dispatch,
and loops and it’s expected output is shown in figure 2.

3 Implementation
In this section I will describe the different parts of my im-
plementation. Starting with the interpreter and continuing
with the different analyses.

3.1 Scanner And Parser
To be able to create an interpreter of AttoL I also had to im-
plement a scanner and a parser. The scanner was generated
using JFlex2. JFlex is a scanner generator for Java, written in
Java.

Generating the scanner was made with Beaver3. Beaver is
a LALR(1) parser generator that takes a context free grammar
and converts it into a Java class that implements a parser for
that grammar.
Both of these were used in the compiler course and they

work nicely together with JastAdd. Therefore I chose to use
them for this project.

3.2 Interpreter
The abstract grammar is very similar to that of AttoL’s, de-
scribed in the overview4. The grammar is modeled by a hier-
archy. I have general abstract classes such as statement and
expression which most of the other classes are subclasses of.
The interpreter is in its own JastAdd aspect and uses an

activation record to keep track of values. The activation
record also has its own aspect with regular Java methods
to get and insert a value. It is basically a hash map where
each entry consists of a string (the variable’s ID) as key and a
Value class object that I implemented as the key’s value. This
2JFLex Web page, http://www.jflex.de/
3Beaver Web page http://beaver.sourceforge.net/
4AttoL Overview http://sepl.cs.uni-frankfurt.de/teaching/overview.pdf/

2

http://sepl.cs.uni-frankfurt.de/teaching/attovm.en.html


Declarative Analysis Course paper, EDAN70, Lund University, Sweden

Value object can contain a string, an int or another activation
record used for new instances of a class. When a class is
instantiated all its statements are run, the values of these
statements are then saved in the value objects activation
record. This is similar to a function call where a temporary
activation record is created for the duration of it’s run time.

Almost all intertype declarations in the interpreter aspect
are basic Java methods and fields since their return values
change during run time. I have defined a Java method called
eval which program, all statements and all expressions im-
plements to correctly evaluate an AttoL program.

To be able to get the declaration of a variable that is used
I have implemented a function decl. The function calls an
inherited attribute lookup(String id) which all relevant
statements define. These are:

• ClassDecl - The variable might be the class name or a
formal.

• FuncDecl - The variable might be the function name
or a formal.

• VarDecl - The variablemight be the variable that VarDecl
declares.

• Block and Program - Should only look for declarations
before the variable is used.

The name analysis logic is in its own aspect, utilizing
the modular approach of JastAdd. In this aspect most of the
intertype declarations are equations since the values won’t
change during run time. RAG also shows it’s strengths here,
since I don’t have to define any order of the lookup calls,
JastAdd handles this.

3.2.1 Definite assignment analysis
The implementation of definite assignment (DA) analysis is
defined by two inherited attributes on the IdUse class. These
attributes are: isDAafter(IdUse id) and isDAbefore(IdUse
id). The idea is that an IdUse has to be DA before it is used
and it is if it is DA after any previous statements in the pro-
gram. I then collect all uses of an id that were not DA before
in a collection attribute. Similarly to the example shown in
figure 1.

3.2.2 Circular Inheritance analysis
The circular inheritance analysis is implemented using a
circular attribute. This collection is a hash set containing
the ids of all superclasses of a class. This means that if there
exists three classes: A, B, and C where A inherits from B and
B inherits from C. The collection of class A would contain B
and C. If the definition is circular the class itself will also be
contained in it’s own superclass collection and an error is
reported. Here the start value is an empty hash set.

JastAdd C
Program 1 0.111504, 0.137556 0.220235, 0.243146
Program 2 0.414614, 0.481326 0.196562, 0.205127

Table 1. Confidence intervals after running test program 1
and 2 a 100 times with the different implementations

4 Evaluation
4.1 Proof of concept examples
A working example constructed by my supervisor Alfred
Åkesson is shown in figure 3. It showcases a linked list im-
plemented using a class. Null checks are also used making
use of the null-object pattern implemented with a NTA.

Another example showcasing the inheritance and dynamic
dispatch is shown in figure 4.

4.2 Performance
I compared the implementation of AttoL in C with my im-
plementation in Java, using JastAdd on the following two
programs.

I ran both the program shown in figure 5 and the program
shown in figure 6, 100 times on each implementation and
got the confidence intervals in seconds seen in table 1. The
JastAdd results are after warmup.

It is quite surprising that the C implementation does the
1 million loops faster than a simple class instantiation but
I don’t now exactly how it’s implemented there. My imple-
mentation handles the class instantiation quite fast and that
was expected. It does take longer to execute program 2 but I
think that is more about java than my implementation since
there are no heavy calculations.

4.3 Definite Assignment analysis
I chose to evaluate my implementation of definite assign-
ment analysis by looking at the source lines of code (sloc)
for my implementation and the C implementation. My im-
plementation has 68 sloc and the C implementation has 168
sloc. The C implementation does also use a generic data-flow
analysis framework which has 338 sloc. By just looking at
these numbers we can see that my implementation has a lot
less sloc. This might of course not mean that my solutions is
better or more understandable but I still think that it shows
some of the pros of declarative programming and RAG.

4.4 Circular Inheritance analysis
I also evaluated the circular inheritance using sloc. It was
implemented with 13 sloc, which is very few. I do not have
proper error messages though. Therefore it is currently only
reporting the line where the circular inheritance is defined.
It does not say anything about which classes are involved.
This would probably add some more sloc.

3



Course paper, EDAN70, Lund University, Sweden Anton Göransson

class ListElement(obj data) {
obj el = data;
obj next = NULL;

obj add(obj d) {
obj toAdd = ListElement(d);
obj a = toAdd;
if (next == NULL) {

next := toAdd;
return d;

}
obj last = next;
int i = 0;
while(last.next != NULL) {

i := i + 1;
last := last.next;

}
last.next := toAdd;
return d;

}

obj get(int index) {
if (index == 0)

return el;
int i = 1;
obj cur = next;
while (i < index) {

i := 1 + i;
cur := cur.next;

}
return cur.el;

}
}

obj lista = ListElement(2);

lista.add(6);
lista.add(8);
lista.add(10);
lista.add(12);

print(lista.el);
print(lista.get(0));// Print 2
print(lista.get(1));// Print 6
print(lista.get(2));// Print 8
print(lista.get(3));// Print 8
print(lista.get(4));// Print 8

Figure 3. Example program, showing a working example
program constructed by my supervisor

class Rectangle(int w, int h) extends Shape {
super(w, h);

}

class Square(int side) extends Shape {
super(side, side);

}

class Triangle(int b, int h) extends Shape {
super(b, h);
int area() {

return x * y / 2;
}

}

class Shape(int width, int height) {
int y = width;
int x = height;
int area() {

return width * height;
}

}
obj r = Rectangle(5, 10);
obj s = Square(10);
obj t = Triangle(5, 10);
print(r.area()); // 50
print(s.area()); // 100
print(t.area()); // 25

Figure 4. Example program, showcasing inheritance and
dynamic dispatch.

class Record(obj x, obj y) {
obj x = x;
int y = y;
int both = x * y;

}

obj r = Record(2, 3);
print(r.both);
print(r.x);
print(r.y);

Figure 5. Test program 1, showing a very simple program
instantiating a class

int x = 1;
while (x < 1000000) {

x := x + 1;
}
print(x);

Figure 6. Test program 2, showing a very simple program
looping 1000000 times

4



Declarative Analysis Course paper, EDAN70, Lund University, Sweden

5 Related work
JastAdd has been used previously when implementing an
interpreter for an already existing language[2]. Oberon has
some similarities to as it is also a small object-oriented lan-
guage. They had a very similar structure on their program,
with an abstract statement and expression class in their ab-
stract grammar. This is almost unavoidable if you want to
have a healthy structure and are implementing a object-
oriented language since java handles hierarchy so well. The
lookup definition is also very similar to my solution.
In ”Declarative Intraprocedural Flow Analysis of Java

Source Code” an implementation of definite assignment anal-
ysis using JastAdd is described[6]. I have taken some inspi-
ration and have tried to implement a similar solution.
Some examples of powerful applications of JastAdd are

shown in "The JastAdd Extensible Java Compiler" by Tor-
björn Ekman and Görel Hedin [1]. They showcase the im-
plementation of name analysis, type analysis and definite
assignment using declarative methods.

6 Conclusion
I have implemented an interpreter for a small programming
language called AttoL using JastAdd. I then extended the
language with inheritance and implemented two different
program analyses, also using JastAdd.
Most of the time were spent on creating a solid base to

experiment with. But when it was done it was quite sim-
ple to add new functionality without modifying old code.
The results were positive with less sloc than the original C
implementation of AttoL.

7 Future Work
As the intention was to create the groundwork to allow
further experimentation with declarative program analysis
using AG, my implementation can hopefully be used exactly
for that since from my results I definitely think JastAdd is
viable.

Acknowledgments
I would like to thank my supervisor Alfred Åkesson for help-
ing me out, solving bugs that I would probably not otherwise
have solved.

References
[1] Torbjörn Ekman and Görel Hedin. 2007. The jastadd extensible java

compiler. ACM Sigplan Notices 42, 10 (2007), 1–18.
[2] Niklas Fors and Görel Hedin. 2015. A JastAdd implementation of

Oberon-0. Science of Computer Programming 114 (2015), 74 – 84.
https://doi.org/10.1016/j.scico.2015.02.002 LDTA (Language Descrip-
tions, Tools, and Applications) Tool Challenge.

[3] Görel Hedin. 2000. Reference attributed grammars. Informatica (Slove-
nia) 24, 3 (2000), 301–317.

[4] Görel Hedin and Eva Magnusson. 2003. JastAdd—an aspect-oriented
compiler construction system. Science of Computer Programming 47, 1

(2003), 37–58.
[5] Kevlin Henney. 2002. Null object. In Proceedings of the Seventh European

Conference on Pattern Languages of Programming, EuroPLoP.
[6] Emma Nilsson-Nyman, Görel Hedin, Eva Magnusson, and Torbjörn

Ekman. 2009. Declarative intraprocedural flow analysis of Java source
code. Electronic Notes in Theoretical Computer Science 238, 5 (2009),
155–171.

5

https://doi.org/10.1016/j.scico.2015.02.002

	Abstract
	1 Introduction
	2 Background
	2.1 JastAdd
	2.2 AttoL

	3 Implementation
	3.1 Scanner And Parser
	3.2 Interpreter

	4 Evaluation
	4.1 Proof of concept examples
	4.2 Performance
	4.3 Definite Assignment analysis
	4.4 Circular Inheritance analysis

	5 Related work
	6 Conclusion
	7 Future Work
	Acknowledgments
	References

