
Language Server Protocol for ExtendJ
Joakim Ericson

D09, Lund University, Sweden
ada09jer@student.lu.se

Abstract
Integrated Development Environments (IDEs) are popular
tools and while they have their benefits, such as diagnos-
tic messages in the editor, code completion, or debugging.
However a drawback of most modern IDEs is the fact that
they only work with a handful of languages, that they are
developed for. The Language Server Protocol (LSP) was de-
veloped to extract some of the language related functionality
of an IDE 1and make it available for any editing software that
would implement a client for the LSP. Currently there are
two major language servers for Java. One using the official
Javac compiler, and the other using Eclipse’s jdt compiler.
While both of these solutions work fine for working with
the standard features of Java, if there were new features of
Java that one wanted to test and still have full support by
a language server, that would not work currently. Thus we
propose to create one using the compiler ExtendJ2, that is
developed at Lund University. We decided that we wanted
to implement a language server using ExtendJ due to the
fact that it is designed to be easy to extend Java with new
features. Since this proposal combines ExtendJ with the LSP
any existing editor, such as vim or sublime, both of which has
a working client would be usable. And can provide helpful
features such as code completion and other such features
that an IDE would traditionally provide. While adding the
extensibility of ExtendJ to the mix.

1 Introduction
Integrated Development Environments (IDEs) provides use-
ful features for their users, such as code completion or type
checking. To bring this type of functionality to more tools
Microsoft, Codenvy and Red Hat collaborated on a protocol,
the Language Server Protocol (LSP)3. In this blog the CEO of
Codenvy is cited stating that a drawback of traditional IDEs
is the fact that they usually bring good features for a spe-
cific language, and if a developer wanted this support they
were forced to use that specific IDE. With the LSP Microsoft,
Codenvy and Red Hat set out to standardize a protocol that
would bring core functionality from an IDE and making it
available to any editor that has a client for LSP. This would
1https://code.visualstudio.com/blogs/2016/06/27/common-language-
protocol
2https://extendj.org/
3https://blog.codenvy.com/press-release-red-hat-codenvy-and-microsoft-
collaborate-on-language-server-protocol-8f7c27f2d2ab

Course paper, EDAN70, Lund University, Sweden
February 4, 2019.

give developers a choice regarding what tools they want
to use when working in different languages. The language
server interface was implemented so that developers would
only have to create one language server per language, and
one client per tool instead. This client would be language
agnostic, and as such the ones developing editing tools could
focus on the editing part, and the ones working on language
features could focus on the actual language part. This means
that developers could get the possibility of choosing their
favourite tool instead of being forced into having more tools
that they might not actually need. In an experience report
on implementing a Language Server for OCaml[1] the au-
thors report that one of the benefits with a working language
server for less popular languages is the fact that the main-
tainers of that language would not have to implement an
entire IDE of their own. But rather just supply a working
language server, and developers that want to try out that
language would already have tool support in their favourite
editor. At the time of this report, there was a webpage list-
ing currently working implementations of the protocol. For
convenience they have listed both what languages have a
working server, and what editors currently have a working
client.4.
The current implementations of Java language servers

lack support for extended versions of Java, such as the ones
provided by ExtendJ. To solve this we set out to implement a
Language Server using ExtendJ for its back end. This would
mean that any extensions to the compiler would automati-
cally be reflected in the language server as well. The evalu-
ation for this implementation will mostly consist of trying
the features by hand in two editors, Vim and Sublime text.
It would also be interesting to compare our language server
with the one that the eclipse foundation have implemented.
However due to the scope of this project we will probably
have a slower system since it is probable that the compiler
itself would need work, to make it faster in this applica-
tion. The reasoning behind this as mentioned in section 3 in
Merlin[1], is due to the fact that a compiler that is developed
for running once every time the programmer deems the file
complete enough for compilation might not have support
for unfinished lines and might give errors that might not
be interesting in the middle of writing program code. Also,
it was mentioned that a good optimization is to not com-
pile all source code at all times for diagnostics, but rather
removing most code in method calls, since the signature of

4https://langserver.org/
1



Course paper, EDAN70, Lund University, Sweden Joakim Ericson

the method call would still be the same. And thus incremen-
tal compilation would be faster. That would then lead to
the time between typing and getting good suggestions for
code completion being shorter than if the compiler would
have to compile everything all the time. This would be more
noticeable the bigger the project that was worked on.

2 Background on the Language Server
Protocol

Language servers are supposed to handle language smart-
ness5 such as Code completion, hover provider, jump to defi-
nition, workspace symbols, find references, and diagnostics.
The most important message in the communication has to be
the capabilities message that is the first message the server
will send to the client. This message is a list of features that
this server will provide, and as such gives the client an idea
of what it can expect to get valid responses to.

2.1 Features
If code completion is implemented, the language server will
be able to send hints to the client on what the programmer
might want to type. This can be based on language features
and if the server has a way of keeping track of what variables
are currently defined, it could suggest variable names as well.

Hover provider means that the language server will be able
to send some information to the client, if the user is hovering
over a word in their editor. From our experience this message
can be anything, but a good language server should provide
useful information about what is being hovered over. An
example would be that Eclipse can put Javadoc for the item
you are hovering over, if it can be found.

Jump to definition means that the server has the capability
of finding where a symbol is defined, and provide a link for
the editor to open andmark. If the server supports workspace
symbols, then it can figure out symbols not only locally in
the text document that is currently open, but all symbols
defined in a predefined workspace. Find references means
that the server should be able to find where a symbol is being
used. Lastly the diagnostics feature means that the server
can send messages to the client and note if there are potential
errors or warnings in the current code base. These messages
can then be shown to the user in useful ways, for example
sublime underlines errors with a red line.

2.2 Communication
Since the communication of the protocol is based on JSON it
means that the client and server are not locked into a specific
way of communication. There are both solutions using TCP
sockets and solutions using standard in and standard out,
meaning direct communication between the programs. Most
examples we found while working on this project seemed to
be biased towards the direct communication. This was also
5https://langserver.org/

fairly noticeable in how the editors were set up to work with
the clients, since they all had a way of running an external
program, in this case the expected external program should
a language server.
The API we used for this project, LSP4J has 3 different

modes for synchronizing documents between the client and
the server. None, Full and Incremental. We were using the
mode Full, which meant that the client would send all the
contents of the file that is worked on every time it would
send an update message. Incremental means that when the
client first starts up, it should send all of the text that is in
the file that was opened, and then just send what is changed
between each time. As for none, this is when the server
does not want any synchronization between the server and
the client. This would still make sense, considering that the
client will tell the server where the file is currently located,
and as such any time the file would be written, the server
could check what is in the file. While the full mode would
make it easier for the language server to always be sure that
it has the most current version of a file, in the case of a large
source a lot of data would have to be communicated. Thus,
incremental makes sense if the language server is confident
that it has a good way to keep track of the changes and keep
an updated model by itself. None would be the mode that
transfers the least amount of data between the client and
the server, and would mostly be useful if the server does not
rely on being in sync with the client.
In figure 1 there is a diagram showing example commu-

nication between a client, labeled Development tool, and
a Language server, in our case the client would be either
sublime or vim. And the server would be our implementa-
tion of the LSP. This figure shows what messages might be
sent between the server and a client during a routine editing
session.

2.3 LSP4J
LSP4J is a framework that is developed to assist developers
interested in creating their own language server in Java7. It
is designed to manage the JSON communication between
the LSP server and client, and to make this communication
available for a Java developer. We use LSP4J in this project
to communicate between our server and the clients we have
tested it with. From the description on the project site on
Eclipse’s webpage they state that Microsoft, Red Hat, and
TypeFox are helping with the implementation of LSP4J. Thus,
it is reasonable that this project would be useful even if the
LSP specification were to change, as both Microsoft and Red
Hat are active in developing both the LSP and LSP4J.

6https://microsoft.github.io/language-server-protocol/overview
7https://projects.eclipse.org/projects/technology.lsp4j

2



Language Server Protocol for ExtendJ Course paper, EDAN70, Lund University, Sweden

Figure 1. This is a diagram provided by Microsoft6that shows example communication during a routine editing session. These
messages are examples of the communication that would occur between a LSP server and client, such as the communication
between our server and any chosen client.

3 Implementation
Currently the system only sends basic diagnostics from the
compiler to the editor. Meaning that our language server is
able to tell the editor to mark lines that contain warnings or
errors from the compiler. Naturally, this means that we need
to start adapting the compiler to be able to send these kinds
of messages.

3.1 ExtendJ as a backend
ExtendJ is an extensible Java compiler that is being devel-
oped at Lund University. The usefulness of this compiler
compared to the standard Java compiler comes from the
fact that ExtendJ is designed to be simple to add support
for new features for the Java language. This and the fact
that the compiler is built using reference attribute grammars,
that can expose some of the inner workings of the compiler,
made it a good candidate for use with a language server. The
fact that it is easy to add and test new language features
to the compiler, would mean that if a language server was
developed using it would also be able to recognize the new
functionality that was added to the compiler.
If the compiler can expose some of its inner workings to

an outside source, which in this case would be a language
server. Then the language server would benefit from having
code analysis done by the compiler, instead of having to
implement that in the language server as well.
We wanted to send diagnostic messages from ExtendJ to

our language server, instead of having these kind of mes-
sages output as text as this would be the first step of having
some sort of language smartness in our language server. Usu-
ally when working with compilers the compiler would print

status reports, including warnings and errors in a terminal,
either inside an IDE or wherever the compiler was run from.
These messages are however not the most ideal way of pre-
senting certain information, such as if a class name was miss
typed and the only message states that the error was on a cer-
tain line. The goal of the diagnostic messages were that they
should be underlined in the editor by sending the correct
type of message.

3.2 LSP4J
Since the LSP works using JSON for its communication, we
needed a way to convert our messages from the server into
valid JSON, for this we used a framework called LSP4J8.
This framework handles communication between a language
server and a client. It has functions that fetches the JSON
requests from a client and simplify the implementation, so
that when the framework is used the details of the commu-
nication is handled by this framework, giving us more time
to work on the actual functionality of the server.

To make this work together with our compiler we started
working out what requests we should run the compiler with.
And for testing purposes we only compile the file that is
currently being saved. This current implementation will then
push errors, if there are any, to the client.

4 Evaluation
For this kind of project it is hard to write useful test suites.
In an experience report[1] the authors reasoned that the fact
that the functionality that we are trying to implement is

8https://projects.eclipse.org/projects/technology.lsp4j
3



Course paper, EDAN70, Lund University, Sweden Joakim Ericson

something a user will have to experience to see if it works.
This led us to decide that manual testing would be more
reasonable, and set up the editors sublime text and vim to
work with our language server. Since a language server by
design should not care what program it is communicating
with, as long as it follows the protocol, the setup was mostly
based on getting the editors to work with their respective
language server clients. For testing, we made a very small
Java program that was opened in the editor when it was
communicating with the language server. Since it was a
small program, we could very simply introduce compiler
errors and make sure that the diagnostics would work. In
figures 2 and 3 we demonstrate how the two editors show
the diagnostic message we send.

5 Related work
5.1 ExtendJ
ExtendJ an extensible Java compiler built on JastAdd9. The
goal of this compiler is to have a fully functional Java com-
piler that is easy to extend with new language functionality.
The compiler is built using reference attribute grammars and
this is one of the reasons the compiler is easy to extend. [2]

5.2 Existing Language servers for Java
We noticed when we wanted to test the current implementa-
tions of language servers for Java that both the major imple-
mentations were not that straight forward to use. Since they
seemed to have been developed for use with particular sys-
tems in mind. One of the language servers only mentioned
that it should be installed from Visual Studio code10, and we
were not able to get it running without Visual Studio code.
The other major implementation seems to be focused around
using with Eclipse11, and we were not able to find a good
guide for getting this to run, either in eclipse or as a stand
alone program. Thus, it would seem that not all the current
language servers are as editor agnostic as it sounded when
reading about the project. Our experience when trying to
get our language server to work, was that Eclipse treated
their language servers as Eclipse plugins, and we are not
sure at this moment how much work would have to be done
to make our language server to work in Eclipse. This seems
to be the case for Visual Studio Code as well, but since we
have never used Visual Studio Code we are not able to say if
our implementation would work there either.

6 Future work
Since this project barely scratched the surface of what a
language server can provide, there is definitely room for
more work. However, when reading an experience report [1]
the authors also state that during their work they noticed that
9http://jastadd.org/
10https://github.com/georgewfraser/java-language-server
11https://github.com/eclipse/eclipse.jdt.ls

the if this protocol is implemented with a compiler that is not
already made for an IDE the compiler will have to be adapted
to handle compiling partial programs. Other optimizations of
the compiler might also be useful if a faster language server is
desired. A good start to improve our implementation would
be to make the diagnostic messages show up in real-time
rather than only when the file is saved. This is more in line
with how a traditional IDE work.

7 Conclusion
The functionality provided by the LSP provides the potential
for adding IDE features for new languages easier than if the
language developers had to develop an entire tool chain. As
would be the case if they wanted language support in an
editor, since the language developers might not have access
towork on existing IDEs. However, if theywere to implement
a working language server, then anyone interested in trying
out their new language would get all the helpful features the
protocol can provide. While not being forced to install and
use a completely new tool. Of course from our experience an
IDE might have more features than the LSP provides, such as
built in debugger, or the ability to compile and run projects
with a simple click of a button in the interface.

It was also interesting to see that the IDE developers also
seem interested in this protocol, as Eclipse is developing
a new client that has support for the LSP12. The fact that
Microsoft also supports this protocol in their Visual Studio
Code editor shows the potential of the protocol, as Microsoft
is a large company that already has developed IDEs for C/C++
in the form of Visual Studio, and they could have simply kept
iterating on this IDE instead being part of the development
of a new way of implementing this type of functionality.
It is worth noting that most of our time on this project

was spent understanding how the LSP works and getting
a simple server to run. We would have liked to get more
time to dig deeper into the inner workings of the compiler to
see what features that might be easy to add to the language
server. That in itself could be an entire project from what we
gathered from working from the perspective of the LSP. We
also came to appreciate the hard work that each IDE have
had to do in the past to get all of the features commonly
associated with an IDE working as good as they have. We
also came to appreciate the fact that there already was a
framework for the JSON messages, this meant that we did
not have to put too much time into implementing that, even
if getting it working from the beginning took longer than
we had hoped.

Acknowledgments
We would like to thank our supervisor Christoph Reichen-
bach for all the good feedback and help we got during this
project.
12https://www.eclipse.org/che/features/

4



Language Server Protocol for ExtendJ Course paper, EDAN70, Lund University, Sweden

Figure 2. An example of the diagnostics message being displayed in sublime.

Figure 3. An example of the diagnostics message being displayed in vim.

References
[1] Frédéric Bour, Thomas Refis, and Gabriel Scherer. 2018. Merlin: A

Language Server for OCaml (Experience Report). Proc. ACM Program.
Lang. 2, ICFP, Article 103 (July 2018), 15 pages. https://doi.org/10.1145/
3236798

[2] Jesper Öqvist. 2018. ExtendJ : Extensible Java compiler, Jennifer B. Sartor
and Stefan Marr (Eds.), Vol. Part F137691. Association for Computing
Machinery (ACM), 234–235. http://dx.doi.org/10.1145/3191697.3213798

5

https://doi.org/10.1145/3236798
https://doi.org/10.1145/3236798
http://dx.doi.org/10.1145/3191697.3213798

	Abstract
	1 Introduction
	2 Background on the Language Server Protocol
	2.1 Features
	2.2 Communication
	2.3 LSP4J

	3 Implementation
	3.1 ExtendJ as a backend
	3.2 LSP4J

	4 Evaluation
	5 Related work
	5.1 ExtendJ
	5.2 Existing Language servers for Java

	6 Future work
	7 Conclusion
	Acknowledgments
	References

