
Reducing error prone code by analyzing immutability

Oskar Berg

dat15obe@student.lu.se

Ruolangxing Zhang

zhan0443@e.ntu.edu.sg

Abstract
Immutability is long known for its advantages of automat-
ically being thread-safe and it works without synchroniza-
tion issues. As we were very interested in this area and in-
tend to reduce errors for programmers. We built a tool based
on java compiler Extendj, so when compiling the program,
the tool produces warnings for potentially wrong mutable
fields, which includes every mutable parameter type as well
as every static field that are mutable. To achieve this we im-
plemented functions such as isMutable(), exposeReference()
and so on. These are two typical cases that mutability could
cause errors. It is a useful tool which can be further devel-
oped.

1. Introduction
A common source of bugs and security vulnerabilities is un-
desired modification in shared resources. In multi-threaded
software this risk increases. Without proper synchronization
there is high risk of race conditions and it can be difficult
to achieve expected behavior. This can actually be reduced
by introducing immutability. Immutable object means this
field or class cannot be changed once created. For example,
a string is naturally immutable(Koved et al. 2005). As when
trying to change a string, you actually creates a new one, and
the old one remains the same.

The advantage of immutability can be summarized into
three parts: Firstly, as Immutable objects have only one state,
once constructed properly, it is not possible to get into incon-
sistent states. Secondly, it allows safe and efficient sharing.
Developers are able to share and cache references freely to

immutable objects without copying or cloning them. Also
their fields or the results of methods can be cached with-
out the worries of values becoming stale or inconsistent with
other objects’ state. Thirdly, immutability ensures thread-
safety. There is no need to synchronize access to immutable
classes across threads, as they are thread-safe themselves.
Furthermore, when immutability is reached, it introduces the
option of using pure methods, which in turn can further im-
prove reliability (Finifter et al. 2008).

Due to the great benefits of immutability, there are many
languages which already started supporting partial enforce-
ment of unchangeable structures (Coblenz et al. 2016). How-
ever, in many cases, there is no way to mark if a object
is intended to be immutable. For existing language features
supporting immutability, many developers often tend to mis-
use a lot of them as a result of complexity and unfamiliarity
(Coblenz et al. 2017).

In this paper we investigate techniques of adding analysis
to an extending compiler. Our aim is to inform the program-
mer of the potentially misused mutable data structures when
our tool is run on code so that they can make changes in
time to prevent data loss or security flaws due to mutabil-
ity. To achieve this, we first implemented a mutability solver
to classify classes as mutable. Then we can use this clas-
sification in situations where mutability is risky and supply
a warning. The programmer can then improve security and
reduce bug prone code by making the classes immutable or
change the contexts in which they are used.

2. Motivating Example
In the course EDAN65 which leads up to this project, an
instance of this issue presented itself. In that course, the
library provided contained its own implementation of a list,
separate from the list provided by Java’s standard library.
Due to not wanting to use two different lists, we decided to
use the one provided in the course. This however caused a



bug which took several hours to solve. It is because that this
list is actually independent from the Java’s list, which means
they have some minor differences. So it is not intended to be
used in the same way as the java’s list. The thing is, in this
list, When things are added or removed, these elements will
be modified by the list. Because it was intended to be used
in a node hierarchy, it changes the elements so their parent
is the list itself.

The issue can be blamed on many different factors. But
since we intend to do a program analyzer, the easiest way
to find such issues is probably by analyzing when mutable
classes are used. The issue could of course been prevented by
providing more appropriate names or other cases of ensuring
proper use of the library. But since it is a very complex task
to analyze the intentions behind names, we did not find that
appropriate.

3. Method
3.1 Choice of language

The language we chose to analyze is Java, which is based
on the possibility of proving immutability in different lan-
guages. Since for languages such as c++ or python, it is
impossible to determine whether variables and data can be
changed from outer scopes, they were not contenders for the
language to analyze. Java is also a object oriented language
where true immutability cannot be achieved in most cases.
With the use of the reflection API, it is possible to access
data which otherwise would be protected, which violates the
immutability property. However, since reflection is not used
commonly and once it occurs developers would know the
possible unforeseen bugs caused by it, in this project we con-
sider these functions out of the scope of our tool.

In the implementation of this tool we chose to use a tool
called JastAdd(Ekman and Hedin 2007), which allows us
to use reference attribute grammar where we define prop-
erties for syntax tree nodes. These properties are then im-
plemented using functions. However since our tool was built
upon an existing Java compiler, ExtendJ(Öqvist 2018), in-
stead of implementing the grammar, we added functionality
by declaring aspects in the nodes where features are added.
In this tool we heavily depended on transferring informa-
tion up and down the syntax tree since the context of dec-
larations and statements is used to derive useful information
about classes. In Jastadd, we can use inherited properties for

nodes and it is easy to derive the status of classes, which is
why it is appropriate for this task.

3.2 Implementation of Properties

As our aim is to identify the risky mutable objects, in this
tool We created warnings for the following two cases: The
first is that there is a warning for every function which has
parameter which is mutable. I.e. when a we call a function
that might have a ArrayList as a parameter. We identify all
the parameters used first then define a property ”isMutable”
in order to test into them one by one. Another case is that we
warn for static field that are mutable by creating functions
isMutable() and isStatic() accordingly.

For function isMutable(), we first set some simple cases.
For example, we define ArrayDecl.isMutable()= true. Then
for classDecl, if its superclass or its bodydecl is mutable,
then we return true.

Speaking of more complicated cases, For FieldDeclara-
tor it’s similar but more complicated. It involves enclosing
class which has inner class. If a enclosing class it exposes
reference, the fieldDeclaractor would be mutable. We imple-
mented an property called ExposesReference, where when a
reference is returned or otherwise leaked to an outside scope,
exposeReference() will return true.

If inside of enclosing class, variable is changed, this field-
Decl is also mutable. This case is checked by function mu-
tatesVariable(), once called, it searches layer by layer until it
encounters the assign operator, it checks if the left part is the
field. If it is, which means the object is changed, this class
should be mutable.

4. Evaluation
As for evaluation, our main method is by the use of various
test cases. Another usually suggested way of evaluating our
tool is to run it on existing Java projects. However, as a result
of absence of time, this was not really possible for us. So
in our case, we did one test case larger than average with
code extracted from the motivating example. The motivating
example may not be optimal because it is partially generated
code. But on the other hand, this code and methods will still
be used by developers so the analysis is still relevant and
meaningful.

There is another approach which can also be taken.
Changing the language rules of java in order to further sup-
port the usage of immutable data structures. This is experi-
mented with in (Zibin et al. 2007). However, our approach



is favorable since it does not demand the developer to learn
additional language features. This is very important when
considering the usability of a tool. Hence code that has been
produced while using our tool can easily be understood and
used by others who don’t, which is not the case when chang-
ing the language.

4.1 Test cases

The majority of our test cases are designed in order to test
whether or not we can infer mutability properly. Our tool
is built upon the Extendj compiler which is not written by
us. There is a great risk of encountering bugs or unforeseen
behavior since our additions may not use the original code
as intended. We therefore try to create as many different test
cases as possible, where we try to change the structure of
the code to test for various situations. For example, we try to
ran our tool on code which contains generics, nested classes,
casts and many other cases.

Great amount of test cases is highly required since we
noticed that even small changes to the sample code can
change the outcome of our analysis. One such instance was
the use of generic classes. The analyzer worked as intended
on a class, but when a generic type was added to the class,
the analysis would give a false negative. Even though the
crucial parts of the class was unchanged. This is because as
mentioned before, we make use of existing code, the analysis
we built was analyzing ordinary classes and in the Extendj
compiler generic classes creates an object which we had not
attached our analyzer upon. Thus proving the importance
detailed test cases.

4.2 Implementation

Since our tool was implemented on top of the ExtendJ com-
piler, it requires a thorough-out understanding of its imple-
mentation rules. In this progress, we encountered some is-
sues in getting our tool behaving as intended. One of the
main roadblocks was that there are many different but simi-
lar types of nodes in their node hierarchy system, so we had
to understand fully and make use of the properties correctly,
which sometimes could be very complicated. Take generic
class and normal classes as an example, as they had sep-
arate nodes, when our tool worked already quite well on
normal classes, it performed hardly any analysis on generic
classes. To solve such problems, we created various testings
and identified a number of common problems in running

them, generally after solving these small cases one by one,
we managed to get decent consistency in the whole project.

4.3 Correctness of tool

As discussed in the previous section, we can not guarantee
the function of our tool on cases which are not covered by
our tests. However, our tests does cover a wide variety of
cases so most the tool should be able to perform correctly.

5. Related Work
Since the benefits of immutability has been known for long,
it is no big surprise that there already exists similar tools
which also analyze immutability.

One of them is Error prone(Aftandilian et al. 2012),
which can find a few bugs related to mutability. This ana-
lyzer has the option to do data flow analysis in order to infer
mutability. Their focus is however on using an annotation
to mark classes that should be immutable and their tool will
warn if this contract is not upheld. They do find a few bugs
without relying on annotations. One is when using final and
static variables, they are preferred to be immutable, a bug
which we can also find with a bit of further work. The anno-
tation method of assuring immutability has both upsides and
downsides, the contract of immutability is better when in a
multi-developer environment since it better communicates
the intentions of objects. However, main function of bug
detection tools are to warn for unforeseeable problems and
requiring developers to use annotations will remove the pos-
sibility of warning users who are unfamiliar with the concept
of immutability.

There is a well-known built-in analyzer in jet brains IDE
called intellij(IntelliJ 2011), which is also able to do some
minor analysis related to mutability. It can recommend pro-
grammers to use final variables or other minor changes to
decrease mutation. However, it does lack the ability to ana-
lyze immutability to the same extent as we do.

6. Concluding Discussion
6.1 Usability

The final version of our tool is more a proof of concept than a
production ready analyzer. However it does work and useful
information can be obtained from it. But in order of it being
considered to be used as a tool in real world applications it
has to be integrated in the work flow of the production. The



easiest way to achieve this is probably to integrate it in a
existing analyzer used in production today.

This tool does not propose solutions to the warnings it
produces. It relies on the user to have high level understand-
ing of designing data structures. When it creates a warning
the user has to understand that it should change it’s data
structures so they can no longer be mutated. This causes the
tool to be ineffective if used by beginners and can become a
obstacle since these warnings are not intended to teach the
concepts of immutability in a efficient way.

Since errors related to mutability is often encountered
when developing in teams that is the most appropriate use
case for our tool. Using immutability is a great way to sig-
nal other developers what information is allowed to change
where, and our tool can warn when developers releases data
to be changed by others, so by using our tool they will re-
ceive warnings for those cases and can reconsidered if it
should actually be restricted.

6.2 Conclusion

After spending hours and hours analyzing mutability we can
conclude that it is a really important and potential subject.
We are also very confident that it can be used to improve
both code quality and reliability of projects. However, the
complexity of the project was more than we had foreseen
and due to the differences of previous coding experience be-
tween our members, a simpler subject as it is now is more
suitable and achievable for us. In this whole process, we did
some researching and also did a lot hands-on practice to im-
plement the functions we plan to achieve. In the meanwhile,
by writing the report along the process, not only our writing
skills are practiced, but also we gradually became more and
more clear about our aims and figured out possible methods
to achieve them. Then After trying out, debugging and retry,
we gained a deeper understanding of this area. So we felt
that we both have learned much through it and it’s great that
we managed to produce this tool in the end.

6.3 Further work

As we learned more about immutability we also learned
more about the benefits of it and are now more confident
that it should be a core focus when designing projects. Thus
we think it is a great area to do further work. The areas
where more work is suitable are probably in how we can
inform or enforce the user to use immutability. We choose
to generate warnings for usages where bugs are likely to

occur. But if the further development instead focuses on
just reporting on what classes are and can be immutable it
might open up the area to more interesting use cases. If we
instead want to build upon our work by adding more cases
where to warn for mutability a great area is the subject of
concurrency, as mentioned in (Lea 2000) immutability is
preferred in concurrent programs.

Acknowledgments
We thank Grel Hedin for assistance and guidance with our
project.

We also acknowledge the developers of the JastAdd li-
brary and the ExtendJ library which without this project
would not be possible.

References
Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sun-

daresan Krishnan. Building useful program analysis tools using
an extensible java compiler. In 2012 IEEE 12th International
Working Conference on Source Code Analysis and Manipula-
tion, pages 14–23. IEEE, 2012.

M. Coblenz, W. Nelson, J. Aldrich, B. Myers, and J. Sun-
shine. Glacier: Transitive class immutability for java. In
2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering (ICSE), pages 496–506, May 2017. doi:
10.1109/ICSE.2017.52.

Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad My-
ers, Sam Weber, and Forrest Shull. Exploring language
support for immutability. In Proceedings of the 38th In-
ternational Conference on Software Engineering, ICSE ’16,
pages 736–747, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-3900-1. doi: 10.1145/2884781.2884798. URL
http://doi.acm.org/10.1145/2884781.2884798.

Torbjörn Ekman and Görel Hedin. The jastadd extensible java
compiler. ACM Sigplan Notices, 42(10):1–18, 2007.

Matthew Finifter, Adrian Mettler, Naveen Sastry, and David
Wagner. Verifiable functional purity in java. In Pro-
ceedings of the 15th ACM Conference on Computer
and Communications Security, CCS ’08, pages 161–
174, New York, NY, USA, 2008. ACM. ISBN 978-
1-59593-810-7. doi: 10.1145/1455770.1455793. URL
http://doi.acm.org/10.1145/1455770.1455793.

IDEA IntelliJ. the most intelligent java ide. JetBrains[online].[cit.
2016-02-23]. Dostupné z: https://www. jetbrains. com/idea/#
chooseYourEdition, 2011.

Larry Koved, Bilha Mendelson, Sara Porat, and Marina Biberstein.
Mutability analysis in java, August 2 2005. US Patent 6,925,638.



Douglas Lea. Concurrent programming in Java: design principles
and patterns. Addison-Wesley Professional, 2000.

Jesper Öqvist. Extendj: extensible java compiler. In 2nd Inter-
national Conference on Art, Science, and Engineering of Pro-
gramming, Programming 2018, pages 234–235. Association for
Computing Machinery (ACM), 2018.

Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, et al. Object
and reference immutability using java generics. In Proceedings
of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The founda-
tions of software engineering, pages 75–84. ACM, 2007.


