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Abstract
This paper presents the implementation of a new program-
ming language belonging to the Datalog family. A short
background on Datalog, its theoretical foundations, and its
applicability for practical problems is introduced. A number
of extensions to the core Datalog language are presented,
the most novel of which is to allow predicates to be used as
terms in atoms. As will be shown, this enables a compact de-
scription of various meta properties such as encoding what
tables to output, or to give static types to predicates.

1 Introduction
Datalog is a syntactically simple declarative language that
enables expression and evaluation of certain �rst-order logic
propositions. From its inception in the nineteen-eighties, Dat-
alog languages saw substantial interest from the academic
community into the early nineteen-nineties[7]. The e�ort’s
primary drive was to create knowledge based systems in
which new facts can be generated through �rst-order rules
of inference. At the time, this had applications in both ar-
ti�cial intelligence and as a complement to the traditional
relational database querying systems such as SQL[5][3].

After a time of cooling interest, Datalog has emerged again
as an attractiveway to express complex inter-dependencies[7].
A notable example is from Program Analysis where frame-
works such as Doop[9] make use of Datalog to derive e.g.
call-graph and points-to information, both of which typically
have mutually recursive dependencies in languages using
dynamic dispatch.
There are currently many Datalog implementations, in-

cluding Sou�e[8], IRIS[4], and BDDBDDB[14]. The imple-
mentations provide di�erent evaluation methods and di�er-
ent extensions to the core Datalog language.
This paper describes a common front-end for Datalog

cross-compilationwhichwewill callDatalogM .DatalogMaims
to provide meta-predicates which facilitate a compact Data-
log description language that may be internally evaluated
or cross-compiled to another Datalog implementation. The
current implementation supports cross-compilation to Souf-
�e as well as internal interpretation. The list of supported
meta-predicates is far from complete, but some progress is
made through the inclusion of so called predicate references
which allow predicate terms to reference other predicates (do
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not worry if these notions are unfamiliar, they will shortly
be explained).

DatalogM is implemented using JastAdd[6]. JastAdd is a
meta-compilation system that enables encoding of arbitrary
graphs on top of an abstract syntax tree (AST). Informa-
tion is propagated through the AST using so-called Refer-
ence Attribute Grammars[6]. JastAdd also supports aspects,
which allows weaving of methods and class �elds from dif-
ferent source locations into a single generated class. It is thus
straightforward to extend the generated AST classes with
additional properties. In particular, it conveniently permits
the incremental addition of support for source-to-source
compilation to di�erent Datalog implementations.

This paper assumes no previous exposure to Datalog. The
next subsection describes the core language and gives a brief
theoretical background. Section 2 describes the core Datalog
implementation. Section 3 describes some common Datalog
extensions that have been implemented and also introduces
meta-predicates. Finally, section 4 contains an evaluation of
the implementation.

1.1 Core Language
There are many �avors of the Datalog language but they
all build on a common core. A program P consists of a set
of Horn clauses H1, . . .Hn . A horn clause has a head and a
body. The head is a single atom and the body is a sequence
of atoms. An atom is identi�ed by a predicate symbol and a
sequence of terms. An example of a propositional rule (i.e. a
rule with atoms that have no terms) is shown below:

A :- B1,B2, . . . Bm

Above is a single horn clause (hereafter called a rule). It has
headA and body B1,B2, . . . Bm . The intuitive meaning of the
rule is that if the conjunction of all the atoms in the body
are true then we conclude that the head A is true.
Datalog deals not only with propositional rules, but al-

lows a restricted range of �rst-order propositions where
each atom is associated with a sequence of terms. A term
is either variable or constant. An atom that contains only
constant terms is called a ground atom. We further partition
the predicates into extensional (EDB) and intensional (IDB).
The EDBs are all predicates that are taken as input from an
external database. The IDBs are the predicates that are not
EDB and are intensionally de�ned through rules. The EDBs
introduce facts, i.e. ground atoms.
• The set of all constants in all facts is called the domain
and is denoted Ω.
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• The set of all facts is called the active database instance
and is denoted I .

There are three main semantic interpretations of Datalog:
model-, �x-point-, and proof-theoretic semantics [7]. The
model theoretic semantics gives meaning to the clauses but
does not directly yield an algorithmic approach to derive all
tuples. Both �x-point- and proof-theoretic semantics yield
straightforward algorithms. The implementation described
in the next section is based on the �x-point approach and is
outlined below. Proof-theoretic semantics is not described
further.

Model-theoretic Semantics
A model of a Datalog program P is a consistent (satisfying
all rules of P ) extension of the initial EDB facts. Each rule is
interpreted as a universally quanti�ed �rst-order statement.
For example, below is given a rule and its corresponding
semantic interpretation.

A(x ,y, ”C”) :- B1(x , ”C”),B2(x ,y)

∀c1 ∈ Ω. ∀c2 ∈ Ω. B1(c1, ”C”) ∧ B2(c1, c2) =⇒ A(c1, c2, ”C”)

An inference algorithm attempts to �nd the minimal model,
i.e. a modelm of P such that for any other modelm′ of P , all
facts ofm are contained inm′. In practice this means that an
inference algorithm should only add a fact if it is required
by the semantics of a rule (even if adding the fact may lead
to an extended model of P ).

Fixpoint-theoretic Semantics
Begin with the set of all facts in the active database instance
I 0. The set of new facts that can be derived (under model-
theoretic semantics) using the rules of a program P and
the existing facts in I i is denoted ∆i . We get the following
inductive de�nition of I :

I 0 = {EDB Facts in P}

I i+1 = I i ∪ ∆i

It can be shown[7] that the minimal model is computed as
In for n such that In = In+1. Since I i ⊆ I i+1 (monotonically
increasing) and with the practical assumption of a �nite
and �xed domain, the �x-point algorithm is guaranteed to
terminate.

2 Core Language Implementation
The current query evaluation mechanism for DatalogM is a
bottom-up naive[7] evaluation. It is based on the �xpoint-
theoretic semantics that derives tuples from rules until no
new tuples can be derived. The rule evaluation is performed
using relational algebra (see e.g. [1]) and a thorough descrip-
tion is given in Appendix A.

2.1 Mutual Dependencies and Predicate Ordering
With multiple rules and potentially many mutual depen-
dencies between the predicates, there is a need to �nd an

order in which to apply the rules. Indeed, for mutually depen-
dent predicates, all rules that may derive new facts for those
predicates need to be iterated together. Strati�cation[7] is the
process of clustering the predicates that need to be computed
together into so called strata as well as to �nd an optimal
order between the strata. The iterative �x-point algorithm is
then run over each stratum following the computed order.
The process is formalized below.

A predicate Pi directly depends on predicate Pj i� there
exists a rule for which Pi is in the head and Pj is in the
body. Let Dep(Pi ) be the set of predicates which Pi directly
depends on. The dependency graph GDEP has the set of
predicate symbols as vertices and there is an edge from Pi
to Pj i� Pj ∈ DEP(Pi ). A strongly connected component
in GDEP then contains the predicates which are mutually
recursive. Such a connected component can be found e.g.
using Tarjan’s algorithm [10] and is called a stratum. By
merging the vertices ofGDEP into such strata we get a graph
GSTRAT with vertices being the strata of GDEP and edges
the collapsed multi-edges fromGDEP . By construction there
exists a total order on GSTRAT with S1 < S2 i� (S1, S2) ∈
Edдe(GSTRAT ). The desired order is found by a reverse post-
order search of GSTRAT .

2.2 Cross Compilation
In addition to internal evaluation, DataloдM supports cross-
compilation, or pretty-printing, to Sou�e[12]. The compi-
lation pipeline is shown in �gure 1. First, a number of se-
mantic checks are performed. For example, the semantic
check ensures that all variables used in the head of a rule
also occures in the body of the rule (the range restriction
property[5]). In the next stage, the program is type checked
(type-checking is described in more detail in the following
section). As was mentioned in the introduction (and will
be explained in the next section), DatalogM supports meta-
predicates. Sou�e however has no such support so naturally
it does not recognize the meta-semantics. To this end, a sepa-
rate pre-process Datalog program is generated to evaluate all
meta-predicates and subsequently output them as EDB �les.
Finally, the program is pretty-printed to a Sou�e program
PSouf f le . PSouf f le declares the meta-predicates and loads
them from the EDB �les; the meta-predicates can then be
used as ordinary predicates within the Sou�e environment.
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Figure 1. Sou�e Printing Pipeline. Yellow: A Datalog Program. Blue: An evaluation mechanism. Green: A compiler stage.

3 Language Extensions
A number of language features have been added in addition
to the core Datalog features. Those extensions are listed and
brie�y described in the following subsections.
3.1 Negation
A common Datalog extension is to allow negation (¬) of
atoms. However, unrestricted negation introduces semantic
issues as the following example illustrates:

A(x) :- ¬B(x). [r1]
B(x) :- ¬A(x). [r2]

There are two issues with the above example. First, no unique
minimal model exists: if r1 is evaluated �rst then A = Ω,B =
∅, and if r2 is evaluated �rst thenA = ∅,B = Ω. Second, even
if a unique minimal model exists, guaranteed termination
is lost since negation removes monotonicity (adding tuples
to one relation may remove tuples from another). The �rst
issue is addressed by ensuring that all variable terms used
in a negated atom are also used in a non-negated (positive)
atom. Second, we require that each stratum retains the mono-
tonic property, in particular this means that mutual recursive
dependencies must be positive.

With the above restrictions, negation becomes a �ltering
rule; an occurrence of a negated atom within a rule has
already been fully evaluated when that rule is considered in
a stratum.
3.2 Object Creation
A special bind predicate was introduced to enable creation
of new objects. Object creation extends the expressive power
of the language. For example, given two numbers x and y, it
is now expressible that x + y ∈ Ω. However, the additional
expressive power may lead to non-terminating programs as
the following example for generating the natural numbers
shows.

Nat(0).
Nat(y) :- Nat(x), BIND(y, x + 1).

3.3 Built-in Predicates and Expressions
Most (if not all) Datalog systems include various built-in
predicates for discarding certain results based on some crite-
ria. The current implementation includes the usual binary
predicates =,,, ≤, . . .. They can be used with expressions
over the usual binary operators +,−, ∗, /. To continue with
the Nat example, a relation that describes the �rst 1000 nat-
ural numbers is shown below:

Nat(0).
Nat(y) :- Nat(x), BIND(y, x + 1), x <= 1000.

3.4 Type System
The language includes a simple type system. The basic types
are:

Strinд : ∗ Inteдer : ∗, PredRe f : ∗

The types are themselves terms and the star indicates the
type of a type (-term). The PredRe f type is used to reference
predicates and forms the basis for meta-predicates (meta-
predicates are introduced in greater detail in section 3.5). A
term of type PredRe f is introduced by putting a single quote
before a predicate name, e.g. ′Nat references the Nat relation.
The type system also includes a List type-constructor, i.e. List
is a function from a term of type ∗ to another term of type ∗:

List : ∗ → ∗

The types are introduced through a special typing (meta-)
predicate:

TYPEOF : PredRe f × List(∗)

In this way,TYPEOF relates the referenced predicate with a
list of types:

TYPEOF (′A, [t1, . . . , tn]). =⇒ A : t1 × . . . × tn

3.4.1 Type Checking and Type Inference
Type-checking and left-to-right type inference of a Datalog
program P is achieved through the generation of another
Datalog program PT . For each clause (rule or fact) in P with
head H and body B, a corresponding rule is added to PT
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with head Ri (with fresh index i) and body H ,B. In addition,
all facts are lifted to the type level and similarly all initial
TYPEOF -facts are added as facts to PT . Lifting of terms to
type-terms is especially easy since the language already rec-
ognizes type-terms. For example, a fact [Age(“Deckard Cain”,
83)] in program P gets added as a corresponding type fact
[Age(String, Integer)] in the type-program PT . To support
left to right type-inference, the original rules are also added
without modi�cation to PT (with potential constants again
lifted to the type-level). An example is shown in �gures
2 (original program P ), and 3 (transformed type program
PT ). The program type-checks if and only if the solution for
every relation in PT contains exactly one tuple (i.e. has a
unique type). The correctness for the type algorithm is more
formally argued for in Appendix B.

Figure 2. The source program P .
TYPEOF('A, [String Integer]).
B(1, 2).
C(x, y, z) :- A("Deckard Cain", y), B(z, z).
D(x, y, z) :- B(x, y), A(z, y).

Figure 3. The transformed type program PT .
A(String, Integer), B(Integer, Integer).
Typeof(PredRef, List(Type)).
C(x, y, z) :- A(String, y), B(z, z).
D(x, y, z) :- B(x, y), A(z, y).
Rule0(x, y, z) :- C(x, y, z), A(String, y), B(z, z).
Rule1(x, y, z) :- D(x, y, z), B(x, y), A(z, y).

3.5 Meta-Predicates
The language needs a way for the user to communicate
certain properties about the Datalog-program P to the in-
terpreter I . An example of such a property is what relations
to load as EDBs. In turn, I makes certain information avail-
able to P which allows P to make inference on properties
of itself. The information passing is realized through a col-
lection of pre-de�ned atoms. The currently supported meta-
predicates together with their semantics is listed in �gure 6.
EDB andOUTPUT pass information from P to I .ATOM and
PRED pass information from I to P . ATOM contains a pred-
icate reference for each user-de�ned atom. PRED contains
a predicate-reference for each occuring predicate. TYPEOF
initially provides I with information about the given types.
After successful type-checks and possibly type-inference,
I makes the result available to P , again through TYPEOF .
In this way, TYPEOF is a bi-directional predicate. Figures
7, 8 show two examples of possible usages for the meta-
predicates. Figure 4 shows a valid usage of the TYPEOF
predicate. The type of B is inferred from the type of the
TYPEOF predicate, and the output of B is as shown in �gure
5.

Figure 4. A valid program that uses the TYPEOF information
OUTPUT('B).
B(x, y) :- TYPEOF(x, y).

Figure 5. Output ("B.csv") of program in �gure 4.
'B,[PredRef List(Type)]
'OUTPUT,[PredRef]
'TYPEOF,[PredRef List(Type)]

Predicate Type Semantics
Datalog Program→ Interpreter

EDB PredRe f × Strinд
(′A, s) ∈ EDB

Tuples in �le s loaded into A

OUTPUT PredRe f
(′A) ∈ OUTPUT

Tuples in A printed to ”A.csv”
Datalog Program← Interpreter

ATOM PredRe f
(′A) ∈ ATOM

A is a user-de�ned atom.

PRED PredRe f
(′A) ∈ PRED

A is any occurring atom.
Datalog Program↔ Interpreter

TYPEOF PredRe f × List(∗)
(′A, [t1, . . . , tn]) ∈ TYPEOF

A : t1 × . . . × tn .

Figure 6.A list of supported meta-predicates. The semantics
column shows an if-and-only-if relation between the upper
and lower statements.

OUTPUT('OUTPUT).
OUTPUT(x) :- ATOM(x).

Figure 7. Printout all user de�ned-atoms as well as the
OUTPUT -relation.

EDB('EDB, "EDB.csv").
Figure 8. Load the tuples that describe what to load as EDB
�les from the external database �le EDB.csv

3.5.1 Interaction with Strati�cation
TheOUTPUT -predicate determines what predicates to com-
pute and output. Thus every predicate directly depends on
OUTPUT (see section 2.1). To evaluate a DatalogMprogram,
the relations are �rst partitioned into strata. The stratum
containing the OUTPUT -predicate is evaluated �rst (us-
ing the �x-point algorithm) to compute the objects in the
OUTPUT -relation. The semantics (see �gure 6) forces each
such object to be evaluated and subsequently printed.

By rooting the reverse post-order search in the strata corre-
sponding to the predicate references in theOUTPUT -relation,
the resulting order (i.e. sequence of stratum) will contain
stratum S if and only if there exists some predicate refer-
ence p in the OUTPUT -relation such that the stratum of p
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transitively depends on the S :

S is evaluated ⇐⇒ ∃ p ∈ OUTPUT . Strat p
∗
−→ S

The EDB-predicate too needs special attention regarding
dependencies since it has the side-e�ect of populating predi-
cates with objects loaded from external data base �les. The
following two dependency rules exist:

EDB(′P , _) =⇒ P −→ EDB

EDB(′EDB, _) =⇒ ∀P ∈ PRED. P −→ EDB

The �rst rule states that if a predicate is referenced in
the EDB-relation, then that predicate directly depends on
EDB. The second rule states that if the EDB-relation is self-
referential, then all predicates directly depend on the EDB-
relation. The current implementation does not support query-
ing the EDB relation or updating it with a variable, i.e. the
following is disallowed:

EDB(x , _) :- A(x).

EDB andOUTPUT may depend on each other. Consider the
example in �gure 9. If the �le "OUTPUT.csv" contains the
single entry ′A, then the output of the program in �gure 9 is
a �le "A.csv" containing the single entry ′A.

EDB('OUTPUT, "OUTPUT.csv").
A(x) :- OUTPUT(x).

Figure 9. Implicit mutual dependency between EDB and
OUTPUT.

4 Evaluation
The evaluation is divided into three parts: testing, perfor-
mance, and expressive power. In all parts, Sou�e[12] is the
implementation evaluated against.

4.1 Testing
The Sou�e pretty-printer (SPP) is used to output a Datalog
program that may be executed by Sou�e. The process of
comparing Sou�e output to that of the internal interpreter
has been automated and a range of tests written. If the tests
agree, then the SPP is said to be correct for the given test
program. Assuming that the Sou�e result is correct, the in-
ternal interpreter too is concluded to be correct for the given
test program. The test cases are selected to cover mutual
recursion, negation, meta-predicates, and the other various
language extensions.

4.2 Performance
Sou�e implements semi-naive evaluation[7] which is essen-
tially the same as naive evaluation except that it utilizes the
following key-insight. An instantiation of the terms of a rule
may derive new tuple(s) if and only if at least one tuple that
was derived in the previous iteration is used in the instantia-
tion. Thus the number of tuples to consider can be greatly
decreased.

The performance is evaluated against two examples shown
in �gures 10 and 11.

Figure 10. Upper bounded Natural Numbers example.
Nat(0).
Nat(y) :- Nat(x), BIND(y, x + 1), y <= N.

Figure 11. Ancestor relation example.
r1: Ancestor(p, c) :- Parent(p, c).
r2: Ancestor(a, c) :- Parent(p, c), Ancestor(a, p).

4.2.1 Theoretical Prediction
NAT Example
For the internal naive algorithm, at step k in the iteration, the
Nat-relation contains k tuples. The internal implementation
uses a tree-set to store the tuples and so each step takes
O(k · loд(k)) time (there is no join (Appendix A) between
Nat and BIND). There are a total of N steps in the algorithm,
thus we get the following upper-bound for the worst-case
running time:

N∑
k=1

k · loд(k) ≤ N 2loд(N ) = O(N 2loд(N ))

For semi-naive evaluation, each iteration gives a single new
element to consider. The corresponding time complexity thus
reduces to the order of:

N∑
k=1

loд(k) ≤ Nloд(N ) = O(Nloд(N ))

Ancestor Example
Assume the initial parent relation:

Parent(Pi , Pi+1), i = 1 . . .N − 1

Then at the k : th iteration of rule r2, the Ancestor rela-
tion contains

∑k
l=1(N − l) elements. The parent relation is

constant with N elements. The dominating (non-indexed)
join-operation thus has accumulated time complexity:

N−1∑
k=1

(
N ·

k∑
l=1
(N − l)

)
= O(N 4)

Similarly, the semi-naive algorithmhas expected time-complexity:
N−1∑
k=1

N · (N − k) = O(N 3)

4.2.2 Experimental Results
NAT Example
The NAT example was measured for inputs in range 100
to 10000 for the internal evaluation, and in range 4096 to
536870912 for Sou�e. The theoretical results was con�rmed
as O(N 2loд(N )) for the internal evaluation. For Sou�e, the
experimental results show O(N ) behavior. The loд(N ) does
not show in Sou�e, most likely due to a more sophisticated
relation representation[8].
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Ancestor Example
The ancestor example was measured for inputs in range 5
to 260 for the internal evaluation, and in range 50 to 16384
for Sou�e. The theoretical results was again con�rmed as
O(N 4) for the internal evaluation. Sou�e performed better
than expected at about O(N 2.33). Again, this is most likely
due to better join-performance which can be achieved by
storing separate index data structures, thus removing the
need to explicitly form the Cartesian product[8].

4.3 Expressive Power
Sou�e supports all the implemented language extensions
except meta-predicates and type-inference[12]. The current
set of meta-predicates o�ered by DatalogMdoes not extend
the expressive power in any meaningful way, but rather
permits more compact and (admittedly subjectively) more
beautiful descriptions of Datalog programs.

Sou�e contains a number of language extensions that are
not currently supported by DatalogM . For example, aggre-
gate functions (such as COUNT ,MIN ,MAX ), union types
(i.e. stating that a term has type A OR type B), and inbuilt
functions (e.g. string operations), and more[12].

5 Related work
5.1 Sou�le
Sou�e implements a semi-naive evaluation[7] and performs
a range of di�erent optimizations before emitting highly
templated C++ code[8]. It focuses on performance and is for
example used in program analysis[9]. It does not provide
meta-predicates but instead uses special directives to declare
what �les should be used as EDBs, what relations should be
printed, and what the type of a predicate is. It does however
provide a number of built-in functions and aggregates that
are not supported by DataloдM [12].

5.2 Other
IRIS [4][11] is an Open Source Datalog implementation writ-
ten in Java. IRIS supports bottom-up evaluation strategies
(both naive and semi-naive), as well as top-down (proof-
theoretic semantics) strategies[11]. It was developed primar-
ily as a research-tool for Semantic Web-related technologies
and supports XML Schema data types.[13].
BDDBDDB[14] was developed at Stanford in the early

2000s and used the then novel technique to store relations
as so called binary-decision diagrams (BDDs). BDDs encode
relations as binary functions represented as directed acyclic
graphs. The encoding allows compression of the relations
and can be very memory e�cient. Memory e�ciency is
important in e.g. program analysis, which is the main use-
case that the project targeted[14].

6 Conclusion
This paper describes a working Datalog implementation with
a number of extensions to the core Datalog semantics. In par-
ticular, the addition of predicate references in conjunction
with a number of meta-predicates permit compact descrip-
tions of Datalog programs. Together with cross-compilation
to another more e�cient Datalog implementation such as
Sou�e,DatalogMhas the potential to grow into a usefulMeta-
Compilation system for specifying Datalog programs. Even
so, performance is one area whereDatalogM is currently lack-
ing. The evaluation shows that two optimizations in particu-
lar would be worthwhile; implementing Semi-naive evalua-
tion, and to add relation indexing in order to decrease the
time-complexity of the join-operation.
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7 Appendix A: Relational Algebra for Rule
Evaluation

Consider the following example:

Order (1, 2), Order (2, 3). [r1]

Order (x , z) :-Order (x ,y), Order (y, z). [r2]

Rule [r1] states that the orders 1, 2 and 2, 3 holds. Rule [r2]
states that the binary Order relation is transitive. The BUN
evaluation proceeds as follows. For each rule that is evalu-
ated, an arti�cial body-relation B is introduced. The body-
relationwill be incrementally populated and extended through
the evaluation of the atoms in the body.
Initially, the relation associated with each atom is un-

named, i.e. the columns of the relation have no name-restrictions.
Given a rule r , we order the atoms from the body of the rule
as A1, . . . ,An . We will consider each atom in turn and use
the body relation B as an accumulator. The equations describ-
ing the rule-evaluation process is as follows (the notation is
explained below):

B0 ← >

Bi+1 ← Bi ./ σT erm(Ai+1) (Ai+1), i = 0, . . . ,n − 1
H ← H ∪ ΠT erm(H )(B

n)

The body relation is initially assigned to > denoting an un-
known relation: > ./ R = R ./ > = R. The Term function
gives the terms in the given atom. H is the head of rule r .
A selection is then done for the atom. The special selection
operator is denoted σ . Informally it selects a set of tuples
from the relation associated with the atom that satis�es the
constraints imposed by the terms of the atom. As a more
formal example:

σx,x,y,c = ρx/x1,y/y1 ◦ Πx1,y1 ◦ σx1=x2,C1=c ◦ ρx1/N0,x2/N1,y1/N2,C1/N3

The selection is for three variables x ,x ,y and a constant c .
First the rename operator ρ is used to rename the columns
of the relation (Ni is an arti�cial initial name for column
i). Then the ordinary σ operator selects all tuples such that
the corresponding variables and constants match under the
given naming. The result of the selection is then projected
(discarding duplicates and constants) using the projection
operator Π, and �nally the inverse renaming is performed.

The selection result is joined (./) with the current body re-
lation Bi to form the next body relation Bi+1. In our example
(assuming that r1 has been evaluated) we get:

B1 ← σx,y (Order ) = {(1, 2), (2, 3)}x,y
B2 ← B1 ./ (σy,z (Order ) = {(1, 2), (2, 3)}y,z )
= {(1, 2), (2, 3)}x,y ./ {(1, 2), (2, 3)}y,z
= {(1, 2, 3)}x,y,z

Finally we project the result of Bn and add the new tuples to
the head relation:

Order ← Order ∪ (Πx,z ({(1, 2, 3)}x,y,z ) = {(1, 3)})

The process is iterated until a �x-point is found, i.e. until
no new tuples can be derived from the set of rules. In our
example, iterating [r2] again gives no new tuples and so the
Order relation has been computed as: {(1, 2), (1, 3), (2, 3)}.

8
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8 Appendix B: Correctness of Type
Algorithm

For an atom A in the type algorithm, let the corresponding
set of tuples be denoted AR . The typing algorithm reports a
type error in one of two cases:

∃A ∈ PREDPT . |AR | > 1 (1)
∃A ∈ PREDPT . |AR | = 0 (2)

A Datalog program P is said to be well-typed if:

∀A ∈ PREDPT . |AR | = 1 (3)

Let Pos(x ,A) give the coordinate of term x in predicate A,
and A[n] give type of A at coordinate n. A rule with two
atoms using the same variable name gives a type constraint:

B[Pos(x ,B)] = τ
∃Rule : . . . ,A(. . . ,x , . . .), . . . ,B(. . . ,x , . . .), . . .

A[Pos(x ,A)] = τ
(C-VarLeft)

A[Pos(x ,A)] = τ
∃Rule : . . . ,A(. . . ,x , . . .), . . . ,B(. . . ,x , . . .), . . .

B[Pos(x ,B)] = τ
(C-VarRight)

Let the type of a constant term t be given by T (t). We get
the following constraint for constants:
∃Clause C : . . .A(. . . , t , . . .), . . . , t : Constant

A[Pos(t ,A)] = T (t)
(C-Constant)

Finally, the semantics of TYPEOF is added as a rule:
∃Fact : TYPEOF (′A, . . . ,τ , . . .)

A[Pos(τ ,TYPEOF )] = τ
(C-TypeOf)

We say that a type algorithm is correct if the type solution
satis�es the listed constraints together with the additional
requirement that in a valid type assignment, each predicate
is assigned exactly one type (property (3) above). C-TypeOf
is satis�ed by the type-checking algorithm by construction.
We now show that it additionally satis�es C-Constant and C-
Var. Together with properties (1), (2) this is enough to show
correctness since (3) ⇐⇒ ¬((1) ∨ (2)).

Proposition: The type-checking algorithm satis�es C-Constant

A clause is either a fact or a rule. All facts are lifted to the
type level and thus trivially satisfy C-Constant. Thus assume
that have a rule with a constant use in an atom A. We will
get a corresponding type-rule with head Ri with A uncondi-
tionally in the body:

Ri (. . .) :- . . .A(. . . , c, . . .) . . .

By the Datalog semantics, |Ri | > 0 if can derive that A
contains a fact with the constant (lifted type) c at coordinate
Pos(c,A). Since there is no other clause that derives facts for
Ri , this is the only way to satisfy |Ri | = 1 (if |Ri | , 1 then
algorithm fails due to (1), (2)).

�

Proposition: The type-checking algorithm satis�es C-Var*
Since C-VarLeft and C-VarRight are completely symmetrical
it su�ces to show for C-VarLeft. Assume that we have a rule
R that gets transformed to a type-rule with head Ri :
Ri (. . . ,x , . . .) :- . . . ,A(. . . ,x , . . .), . . . ,B(. . . ,x , . . .), . . .
B[Pos(x ,B)] = τ

The algorithm reports a type error i� (3) does not hold for the
type-program. Thus B[Pos(x ,B)] has τ as the only member.
By the Datalog semantics (and from the fact that no other
rule populates Ri ), (3) holds if and only if A[Pos(x ,A)] = τ .

�
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