
Extending Java with the Exponentiation and Safe
Navigation Operators

Emma Asklund
D14, Lund University, Sweden

dat14eas@student.lu.se

Victor Winberg
D14, Lund University, Sweden

dat14vwi@student.lu.se

Abstract
This report describes the implementation of the exponentia-
tion and safe navigation operators as extensions to the Java
compiler ExtendJ. Our implementations of these operators
in ExtendJ is functional and can be used to compile exist-
ing Java programs. Bytecode generation is also supported.
The implementation of these operators is small, thanks to
mapping to pre-existing language constructs.

We have evaluated the safe navigation operator by looking
into benefits of using the save navigation operator in three
Java and three Groovy open source projects. The conclusion
after looking into these six projects is that the safe navigation
operator is not as useful as we thought it would be.

1 Introduction
Exponentiation and safe navigation are two common oper-
ators available in, for example, the Groovy programming
language. Exponentiation is useful in mathematical expres-
sions, and safe navigation is used to simplify code navigating
through nullable refernces. These operators do not exist in
the Java programming language, as of Java version 11. Espe-
cially the safe navigation operator would be useful in Java
code, which often deals with null references.

In this project, we investigate how the exponentiation and
safe navigation operators can be implemented as extensions
to the extensible Java compiler ExtendJ. We implemented
the operators by using desugaring, a technique which allows
us to simplify code generation for the new operators.

The implementation process was mostly straightforward,
but we did encounter a couple of challenges whichwe discuss
in this report. Adding features to a language does require
new code to bewritten but depending on how you implement
features to a language the difficulty can differ. ExtendJ has
the advantage of using static aspects and Reference Attribute
Grammars (RAGs) for describing its semantics [1].

Our research question is:
RQ1. Can Java code be simplified using the safe navigation

operator?
The rest of this paper is organized as follows: Section 3

briefly describes the ExtendJ compiler. Section 4 explains
the implementation for both operators with code snippets

Course paper, EDAN70, Lund University, Sweden
January 12, 2019.

from the implementation. Section 5 gives an evaluation of
our research question and section 6 discusses related work.

2 Background
The exponentiation operator takes the first argument to the
power of the second one. This operator exist in several other
programming languages, e.g. Groovy [2], Python [3] and
Javascript [4].
The safe navigation operator is a newer operator and is

used in some programming languages, like Groovy [2] and
C#. The safe navigation operator works similar to a regular
dot expression, but it performs a null-check on the value
before the operator and if not null performs the regular dot
operation.

If we take a simple example of using tree structured nodes
we could create a class called Node that have the variables
left and right that are both nodes, see below:

public class Node {
public Node left;
public Node right;

public Node() {}
public Node(Node left, Node right) {
this.left = left;
this.right = right;

}
}

If we would like to reach a node at the depth three at the
most left hand side we could reach it by calling left three
times on the original node with a normal dot expression, like
this:

Node found = original.left.left.left;

However, this could cause a null pointer exception. To make
the code more robust, we would need to check for null at
each level, e.g:

Node found = (original != null
&& original.left != null
&& original.left.left != null)
? original.left.left.left : null;

1

Course paper, EDAN70, Lund University, Sweden Emma Asklund and Victor Winberg

This is unnecessarily long code for simple null safe navi-
gation checks. With the safe navigation operator, the code
above could instead be almost as short as the original non-
null safe statement, that is:

Node found = original?.left?.left?.left;

3 ExtendJ
In this section we give an brief overview of the Java compiler
ExtendJ and its metacompiler JastAdd [1].
ExtendJ is open source, implemented using JastAdd [5],

a metacompiler supporting Reference Attribute Grammars
[6], has support for Java 8, and was build with the goal of
being easily extendable. The compiler has an architecture
that is possible for extensions to add, remove and combine
features [7].

4 Implementation
In this section we will discuss the technical parts of the
project by showing and explaining code snippets from our
implementation of the two operators.

ExtendJ extensions can extend the Java language with new
constructs and new behaviour. New constructs are added
by new tokens in the lexical analyzer and new parser rules.
The behaviour of the language is extended with attribute
equations.

We have followed a similar structure when implementing
both operators. First, the parser is modified, then the scanner
and after that, we added new attribute equations to analyze
uses of the new operators for type errors, and to generate
bytecode.

4.1 The exponentiation operator
The exponentiation operator can be used for raising an ex-
pression to the power of another. For example the math
expression 3x is equal to the expression 3**x.
In Java, this can be seen as syntactic sugar for Math.pow(3,
x). Using a lexical analyzer generator we could extend the
ExtendJ compiler simply by adding the ”**” string to the
language with the code snippet below:

<YYINITIAL> {
"**" { return sym(Terminals.POW); }

}

The exponentiation operator is detected by our lexical an-
alyzer. Then we need to proceed by using a LALR parser
generator that will extend the language by using the new
terminal POW by the (simplified) EBNF parsing rule below:

Expr mul_expr =
expr.e1 POW expr.e2

{: return new PowExpr(e1, e2); :}
;

This adds a new production for the multiplicative expres-
sions to a new PowExpr. The PowExpr will be defined with
desugaring in the JastAdd language.
The exponentiation operator is now both detected and

parsed to a PowExpr class. First we defined the JastAdd class
of the PowExpr using the abstract grammar syntax below:

PowExpr : MultiplicativeExpr ;

In the code snippet above we define an abstract grammar rule
with the PowExpr-class as a subclass of MultiplicativeExpr.

To implement PowExpr we use a higher-order attribute to
compute the desugared form of the expression. The attribute
is defined by the following JastAdd code:

syn nta Expr PowExpr.desugared() {
args = new List(left.tree, right.tree);
type = new TypeAccess("java.lang", "Math");
method = new MethodAccess("pow", args);
return new Dot(type, method);

}

This defines a synthesized nonterminal attribute desugared
on PowExpr. To know which nodes to use in the desugared
AST, we wrote a simple test program that worked as we
wanted our new function to work, then we printed the AST
for the hand-constructed program to use as template for the
desugared AST. This generated a tree showing which nodes
we wanted to desugar. We wrote the small program:

int x = 4;
x = (int) (x ** 5);

Then printed the AST (simplified):

VarDeclStmt
PrimitiveTypeAccess ID="int"
VariableDeclarator ID="x"

IntegerLiteral LITERAL="4"
ExprStmt

AssignSimpleExpr
VarAccess ID="x"
CastExpr

PrimitiveTypeAccess ID="int"
PowExpr
VarAccess ID="x"
IntegerLiteral LITERAL="5"

The desugared expression is used to generate code for expo-
nentiation expressions by adding the following code snippet:

2

Extending Java with the Exp. and Safe Nav. operators Course paper, EDAN70, Lund University, Sweden

public void PowExpr.createBCode(CodeGen gen) {
desugared().createBCode(gen);

}

4.2 The safe navigation operator
The safe navigation operator is used to simplify code navigat-
ing through nullable refernces. The syntax for the operator
is a question mark followed by a dot. We added the following
code to the scanner specifications to recognize ”?.” as a new
operator:

<YYINITIAL> {
"?." { return sym(Terminals.NULLSAFEDOT); }

}

This generates a new NULLSAFEDOT terminal that will be
used in the parser. To handle parsing, we added a new parser
rule similarly to the exponentiation operator.
For the parsing aspect we added the NULLSAFEDOT to

the parser’s precedence file and that the the parser should
create a NullSafeDot when a qualified_name was used.

Similar to how we did to figure out which tree structure to
use in the exponentiation operator for desugaring, we used
a simple program here as well, starting with:

if(a != null){
a.b;

}

However this statement does not work because the AST
is expecting an expression and the code shown above is a
statement. To fix this we changed our program into using a
conditional expression:

a != null ? a.b : null;

However, with this conditional expression we now have the
problem that when checking multiple variables we could
receive side effects. This due to each null check chained
with one or multiple methods values could change values of
internal variables. For example:
scanner.next()?.value

Would thereby call method next twice, once in check and
once in return:
scanner.next() != null ?

scanner.next().value : null;

We worked around this issue by using an anonymous class.
By instantiating the Supplier interface with the Node class
and storing the value in the get-method, it resulted in some-
thing like the code below:

Node left = new Supplier<Node>() {
public Node get() {

Node right = node.right;
return right.left;

}
}.get();

We first tried to generate the bytecode similar to how
we did in the exponentiation operator using the desugar-
ing pattern but found out that it did not work for all cases.
Instead, we used a JastAdd AST rewriting mechanism. The
difference between desugaring and rewriting is that with
desugaring you can only add to the AST while rewrite can
make modifications in it.
We used rewrite when getting bytecode to the safe nav-

igation operator because we needed to add the null check
before the dot operator. The code snippet below shows how
we used the rewrite mechanism to perform the conditional
expression check if null.

rewrite NullSafeDot {
to Expr {
NullLiteral nil = new NullLiteral("null");
NEExpr neexpr = new NEExpr(
getLeft().treeCopy(), nil);

Dot dot = new Dot(getLeft().treeCopy(),
getRight().treeCopy());

return new ConditionalExpr(neexpr, dot, nil);
}

}

5 Evaluation
Here we will evaluate our research question RQ1, if the
operators could save a lot of time and lines of code if it is
used in the right way. We will compare projects regarding
their uses of null safe occurrences with different languages
and sizes, by using resources online.
Comparing the two examples using the Node class from

the background section, we can see that a null safe naviga-
tion operator is useful in some specific cases. However, to
determine the benefit of adding a null safe navigation opera-
tor to a language we think it is important to compare the use
of the null safe navigation operator in real examples and not
only artifical examples. Therefore, we looked for examples
form large GitHub repositories.
We used the following projects in our evaluation: TheAl-

gorithms - Java (8k lines of code) [8], java-design-patterns
(25k lines of code) [9] and spring-boot (250k lines of code)
[10]. In the first repository (TheAlgorithms) we found 13
cases where simple null safe navigation operator could be
used to replace a simple null safe check:

3

Course paper, EDAN70, Lund University, Sweden Emma Asklund and Victor Winberg

Project Algorithms Patterns Spring
Lines of code 8k 25k 250k
Null safe occ 13 30 200

Table 1. Three big Java projects from GitHub compared

Project Geb [11] Grails [12] Nextflow [13]
Lines of code 24k 37k 76k
Null safe occ 70 200 734

Table 2. Three big Groovy projects from GitHub compared

if (right != null) {
right.traverse(visitor);

}

Could be converted into:

right?.traverse(visitor);

Given the thousands lines of code in table 1 it is just a
very small amount of instances where the safe navigation
operator could be used. For the more complex cases of nested
null checks we could not find any instances of nested null
checks as described earlier.

Instead of using null checks for navigation we found that
most of the null checks were used to check whether or not
the object sent as a parameter to a method was null or not.
Perhaps those cases could be some sort of indirect case were
the null check would appear ”further down” in the code with
a safe navigation operator, e.g:

if (added != null) {
list.insert(added);

}

The other simple null checks were used to determine if the
method was done or not fetching all the required variables,
e.g:

if (user != null) {
return user;

}
user = dbConn.get(username);
user.setActive();
return user;

Although we could create artificial examples where safe
navigation makes a major difference, we couldn’t find any
real examples where it could decrease complexity. Further-
more, we compared projects in the language Groovy that has
the safe navigation operator. Similarly to what we concluded
that safe navigation operator is not used a lot in big Groovy
projects either, see table 2.

We assumed that safe navigation would save a lot of lines
of code. Simultaneously as we have proven that using safe
navigation could have cases where the code would be much
shorter and more readable, we haven’t found any real ex-
ample that complex as we showed earlier. Furthermore, the
amount of code saved in real life projects we found is pretty
small. Also, since we couldn’t properly succeed implement-
ing this operator completely, we do not see the operator to
be easily implemented either. In conclusion, we have not
found enough motivation for implementing the safe naviga-
tion operator. However, it could still be an useful operator if
there is some proofs from real projects that contradicts what
we found and instead benefits from using safe navigation op-
erator. It is also about the balance between having too many
and too few operators and what benefits they add compared
to the complexity it adds.

6 Related work
Previous extensions to ExtendJ have added operators to the
compiler similarly to how we implemented the exponen-
tiation and safe navigation operators, e.g. Chonewics and
Stenström [14] who implemented the print-assign operator
and partially implemented the spread-operator. The print-
assign operator is a new operator that prints the value when
assigning a value to some variable, which is mainly used for
debugging code. The spread operator is a newer operator
but also used in some programming languages, e.g. Groovy
[2].
Another project that extended Java with ExtendJ was

Hjelm’s and Olsson’s project [15]. In their report, they ex-
plain the changes made to support Java 9 and how their
changes impact the existing compiler. Both the mentioned
projects are done under the same circumstances as our project.

7 Conclusion
In this report, we have described our implementation of the
exponentiation operator and the safe navigation operator as
extensions to Java with ExtendJ.

The safe navigation operator is an operator that can make
the code more easy to read if a null check needs to be done
before navigating through, or calling a method on, a nul-
lable reference. However, after investigating different Java
projects, we have shown that safe checks is used in a very
small amount.

We managed to implement a simple safe navigation oper-
ator used for variables only with a small amount of lines of
code.

Our conclusion to our research question is that safe navi-
gation saves at most a very small amount of code.
Future work could investigate the differences in imple-

menting new operators, and extensions, in different compil-
ers.

4

Extending Java with the Exp. and Safe Nav. operators Course paper, EDAN70, Lund University, Sweden

Acknowledgments
We would like to say thank you to our supervisor, the main-
tainer of ExtendJ, Jesper Öqvist, for the help with our imple-
mentations and valuable feedback on this report.

References
[1] G. Hedin and E. Magnusson, “Jastadd—an aspect-oriented compiler

construction system,” Science of Computer Programming, vol. 47, no. 1,
pp. 37–58, 2003.

[2] “Groovy operators,” Apache Groovy, 2018. [Online]. Available:
http://groovy-lang.org/operators.html

[3] “operator — standard operators as functions,” Python Software
Foundation, 2018. [Online]. Available: https://docs.python.org/3.4/
library/operator.html

[4] “Ecmascript 2016,” Ecma International, 2016. [Online]. Available: https:
//www.ecma-international.org/ecma-262/7.0/#sec-exp-operator

[5] G. Hedin, “Reference attributed grammars,” Informatica (Slovenia),
vol. 24, no. 3, pp. 301–317, 2000.

[6] G. Hedin, An Introductory Tutorial on JastAdd Attribute Grammars.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 166–200.
[Online]. Available: https://doi.org/10.1007/978-3-642-18023-1_4

[7] “Extendj - the jastadd extensible java compiler,” 2018. [Online].
Available: https://extendj.org/index.html

[8] “All algorithms implemented in java,” The Algorithms, 2018. [Online].
Available: https://github.com/TheAlgorithms/Java

[9] I. Seppälä, “Design patterns implemented in java,” 2018. [Online].
Available: https://github.com/iluwatar/java-design-patterns

[10] “Spring boot,” Spring, 2018. [Online]. Available: https://github.com/
spring-projects/spring-boot

[11] “Very groovy browser automation,” Geb, 2018. [Online]. Available:
https://github.com/geb/geb

[12] “Gorm - groovy object mapping,” Grails, 2018. [Online]. Available:
https://github.com/grails/grails-data-mapping

[13] “A dsl for data-driven computational pipelines,” nextflow-io, 2018.
[Online]. Available: https://github.com/nextflow-io/nextflow

[14] W. Chonewics and F. Stenström, “Extending java with new operators
using extendj,” Project in Computer Science, Lund University, 2017, 2017.

[15] S. Hjelm and M. Olsson, “Extending the extendj java compiler with
java 9 support,” Project in Computer Science, Lund University, 2017, 2017.

5

http://groovy-lang.org/operators.html
https://docs.python.org/3.4/library/operator.html
https://docs.python.org/3.4/library/operator.html
https://www.ecma-international.org/ecma-262/7.0/#sec-exp-operator
https://www.ecma-international.org/ecma-262/7.0/#sec-exp-operator
https://doi.org/10.1007/978-3-642-18023-1_4
https://extendj.org/index.html
https://github.com/TheAlgorithms/Java
https://github.com/iluwatar/java-design-patterns
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot
https://github.com/geb/geb
https://github.com/grails/grails-data-mapping
https://github.com/nextflow-io/nextflow

	Abstract
	1 Introduction
	2 Background
	3 ExtendJ
	4 Implementation
	4.1 The exponentiation operator
	4.2 The safe navigation operator

	5 Evaluation
	6 Related work
	7 Conclusion
	Acknowledgments
	References

