Implementation of graphical editor using Sirius

David Phung

D13, Lund University, Sweden
dat13tph@student.lu.se

Abstract

One of the first steps in the process of model-driven de-
velopment is to construct an editor that would allow for
creation and modification of models. For domain specific
languages, there might not be an existing product on the
market that have support for the language. Moreover, the
cost of building one such editor can be too expensive if done
from the ground up. A number of tools and frameworks have
therefore been developed to help alleviate this problem. We
present our study of one such frameworks, Sirius. Sirius is
an Eclipse project aims at enabling rapid development of
graphical editor without high level of required knowledge.
By implementing an editor ourselves using the framework,
we have highlighted a number of its strengths and the factors
that should be considered before a developer unfamiliar with
Eclipse modeling projects can start using Sirius.

1 Introduction

Effort has been put into researching and developing model-
driven engineering as a way to address the platform complex-
ity problem and to express domain concepts more effectively
[3]. To support MDE, a number of Eclipse projects have been
conducted to develop frameworks that would facilitate the
modeling process. One of the most notable among these
frameworks is the Eclipse modeling framework (EMF) which
allows developer to describe a model and generate artifacts
from it !. Based on EMF, GMF is another framework that
offers support for developing graphical editors in Eclipse 2.

The Sirius framework is built on top of GMF, serving a
similar purpose, that is to support development of editor for
modeling languages. The difference between the two is that
Sirius hides away the complexity of GMF and eliminate the
need for a high level of knowledge in object-oriented pro-
gramming. This has the effect of enabling rapid development
without the need for back-end knowledge [5]. Using Sirius,
the developer can graphically define the features and capa-
bilities of an editor, tailor it so that it would suit a specific
modeling language. This can be a quite useful solution for a
lot of Domain specific languages where creating an editor
from the ground up is too expensive.

Sirius’s approach is quite interesting as most of the work
is done in a graphical editor, in comparison to other tools

Ihttps://www.eclipse.org/modeling/emf/
Zhttps://www.eclipse.org/modeling/gmp/

Course paper, EDAN70, Lund University, Sweden
January 15, 2018.

such as EuGENia, which uses annotation. Work has also
been done to compare Sirius with Graffiti with Sirius being
evaluated as better for domain specific modeling graphical
editors [6]. In this project, we will take a close look at the
process of development using Sirius to further evaluate its
strengths and weaknesses. We will also highlight the level
of required knowledge and the different factors that should
be considered before a developer unfamiliar with the Eclipse
frameworks can start working with Sirius. The work will be
done in an practical fashion, by actually implementing an
editor ourselves. An editor for a language heavily inspired by
statechart, a state-machine language that supports contain-
ment, will be implemented. We will also investigate whether
Sirius have support for user-defined type, a feature that could
be beneficial for graphical editors.

2 Eclipse modeling framework and Sirius
2.1 Eclipse modeling framework

Aside from being an IDE for programming languages, such as
Java, Eclipse also serves as a platform for a number of model-
based plug-in projects. An important project among these is
the Eclipse modeling framework (EMF) which facilitates the
creation of a data model as well as provide code generation
support. In particular, EMF allows the developers to describe
a data model in one of the three forms, Java interfaces, UML
diagram or XML scheme, and then generate the others from
it [4]. Here a data model means a model used to represent
different concepts, their attributes and relationship to one
another in a certain domain, the logic and behavior of the
data are often not included. Not only that, EMF also provides
generated code for a simple Eclipse-based editor to construct
and manage instances of the data model. As an example to
further illustrate this, let us suppose that we are working
with a small domain specific language used to describe a
family tree (the example language in the Sirius tutorials).
In the first step we can use EMF to create a data model
describing the different concepts in a family tree such as
father, mother, children, their attributes and relationship.
Then in the second step we can use the generated code and
editor to create and modify actual family tree instances. The
model that we created in step one is called a meta-model
which is often defined as a model of model. A more precise
definition also exists in which a meta-model is defined as a
model describing the abstract syntax of a language, capturing
its concepts and relationship [2].

Course paper, EDAN70, Lund University, Sweden

2.2 Sirius

While the editor generated by EMF is easy obtainable, its tree-
based structure and slow working flow make it inefficient
for large models, or models in form of graph. There is there-
fore a need for a way to create editors that can suit different
meta-models defined in EMF . GMF, a framework which
encapsulates the Graphical editor framework and Draw2D,
was built to provide developers with the capabilities of cre-
ating graphical editor for EMF models. However, one of its
big disadvantages is that it is rather complex and requires a
high level of domain knowledge in object oriented program-
ming. The Sirius framework was in turn developed to solve
this problem. Sirius is built on top of GMF, encapsulates it
and provides the ability to rapidly develop a graphical editor
without the need to know about the underlying processes.[5]

It is important to mention that the scope of Sirius is limited
to only to the graphical representation specification of data,
the data itself must be specified in EMF. To further clarify
this, we will continue with our example about the family
tree domain language above. Once the abstract grammar
of the language has been specified in the meta-model, we
can start building family tree instances. Suppose we want
to display an instance in a diagram where each family mem-
ber is represented by a person icon together with a label
displaying their name. Obviously we would need to specify
information such as how the icon will look like, the label’s
text size and color etc. These pieces of information only de-
scribe how to represent each person graphically and does
not at all concern the specification of their attributes and
relationships. There is therefore a clear distinction between
a graphical- and a data specification. This is also the line sep-
arating the scope of Sirius and EMF. To change the definition
of data, we must modify the EMF meta-model, to change the
graphical representation of data, we must modify the Sirius
specification.

In general, the process of creating an editor in Sirius be
divided into three main steps: defining the language, specify-
ing a graphical representation and finally create a set of tools
to edit the model. The first step is done solely in EMF after
which models of the defined language can already be created
and modified with help of the generated EMF-editor. In Sirius
terms, these model, which describe the domain problem, is
called semantic models and its objects semantic objects. In
the second step, we specify how to represent the semantic
models on the final editor by using another tree-based editor
provided by Sirius. In this tree, each node denotes a mapping
between a semantic object and its graphical representation.
For each mapping, we can specify input information such the
shape, color, icon of the graphical representation (in a style
element) and additional rules on when the mapping should
be applicable. Based on these inputs, Sirius will automati-
cally scan for suitable candidates in the semantic model and
uses the styling information to generate graphical objects for

David Phung

them. In the third step, we specify the tools necessary to cre-
ate and edit the model objects. Similar as in the second step,
each tool also has a mapping describing which semantic-
graphic mapping it will have effect on and different rules
describing when the tool should be applicable. The effects
of the tools are defined using model operations which will
be performed sequentially in the order they were specified.
Sirius supports most commonly used model operations but
also allowing developers to define new ones by invoking
their own Java methods .

2.3 Query languages

When working with Sirius, it is common that the developer
will have to provide an interpreted expression as an input
to different parameters, such as the rules mentioned above.
Sirius supports three default languages to write these ex-
pressions AQL, Acceleo and raw OCL and the possibility to
define your own custom language. In this project, we made
use of only the AQL language. It is a small, simple and fast
language that is used to navigate and query an EMF-model
4, Often it is used in our implementation to produce text,
boolean values or a subset of the semantic models during
runtime as input to certain parameters. If the expressions
become too long and complex, they can be written instead
in Java services, which are Java methods conforming to a
certain format °3.

3 Features to be implemented
3.1 Statechart features

Since statechart is a state-machine language, the basic defi-
nition of a program is that it consists of a number of states,
events and state transitions. Each state transition happens
when a certain event is triggered and takes the system from a
state to another. To facilitate the modeling of a large system
with large amount of states and state transitions, statechart
introduces a special class of state called super state. These
are container that affect state transitions in certain ways. To
better explain this, we will take an example of an XOR state
(figure 1). When two state transitions starting from different
sources but end up in the same target when a certain event
is triggered, we can put the source states inside an XOR
state and combine the two state transitions into one instead.
When a state transition ends in an XOR state, the system
will be redirected into one of its child states. An AND state
is another sub-type of super state that allows the system
to be in multiple states at the same time. Aside from these
two super states, we will also be implementing support for
history states. A history state can only exist inside an XOR
state and redirect an entering state transition towards the
last state in the XOR state that the system was in.

Shttps://www.eclipse.org/sirius/doc/
4https://www.eclipse.org/acceleo/documentation/aql.html

Implementation of graphical editor using Sirius

XOR

(& ()
E

Figure 1. The graph on the left side is equivalent to the right
side.

A notable feature of statechart in comparison with normal
state machine diagrams is the concept of super states that
can contain other states. This creates a number of interesting
questions that we will use to investigate the capability of
Sirius:

e [s it possible to create graphical objects that can con-
tain others?

e A super state can contain other super state which in
turn can contain other states. How can this be done in
Sirius? Does it support recursion or is there a limit to
the level of nested containment.

e There are a number of semantic restrictions in the fea-
tures we introduced, such as: a simple state cannot
contain another state, there can be only one history
state in an XOR state. If these restrictions are not spec-
ified in the semantic model (to simplify the model for
example), can we impose them on the graphical objects
instead?

3.2 Additional feature

Aside from the above mentioned, we will also investigate
whether it is possible to have user-defined types in Sirius.
User-defined types here means that after the user has defined
type, they can quickly create instances of it in other places.
In particular, we will attempt to achieve the following:

e Being able to define a type in a separate view.

e Being able to quickly create an instance of a type in
the program view.

o If the content of a type is modified in the separated
view, the changes will be reflected in the program view,
but not the other way around. If the type instance is
changed in the program view, the type definition stays
the same.

Since we are working with a state-machine language, a type
will consists of a number of states and state transitions.
Events are declared as global and are available in all scopes.

Course paper, EDAN70, Lund University, Sweden

4 Implementation
4.1 Statechart features

We have defined our meta-model to capture the four main
concepts of the statechart features, details can be seen in
figure 2.

e Program: Each program contains of a number of states
and events. All events are direct children of the pro-
gram but not all states are.

e State: An abstract class from which other concrete state
types can inherit. Each state can contain other states
and state jumps. It is inherited by the four state types:
SimpleState, XOR_State, AND_State and HistoryState.

e StateJump: Representing a state transition. It has two
references pointing to the source and the target states
as well as a reference to the event that will trigger the
transition.

e Event: An abstract class for the different event sub-
classes. In this project, we have only implemented two
event types: SimpleEvent which represents I/O input
and PeriodicEvent which triggers itself after a certain
period of time.

Inside the Sirius editor, we have specified our mappings in
accordance to table I. Super states are naturally mapped to
container elements but even simple states are also mapped
to containers instead of regular nodes. This is due to the
fact that we wanted to use a gradient style to display simple
states but regular nodes do not support this. Using the AQL
language, we have defined a number of rules that would limit
the set of semantic objects a certain mapping would be ap-
plied, as can be seen under the column semantic candidates.
Another important detail is the import parameter. It allows
developers to reuse mapping specifications as children of a
certain container. For example, instead of creating another
child element under the XOR container in the tree, we im-
ported the existing one defined on the top level to avoid
double maintenance. Sirius allows importing to happen in
a circular fashion (e.g when an element importing itself)
which can be seen as a form of recursion support.

The implemented tools and their description can be seen
in table II. Similar to semantic-graphic mappings, we also
used interpreted expression to prevent the tools from be-
ing applied in incorrect situations (preconditions). It is also
worth to note that Sirius provides a default context depen-
dent property view from which an object in the diagram can
be modified. This view is similar to the one in the EMF editor
and we have not been able to find out how to modify it.

4.2 User-defined type

In order to support user-defined type, we have extended the
meta-model of the language by adding a class called Type.
Each program contains zero or many types and each type can
contain a number of states. The specification has also been

Course paper, EDAN70, Lund University, Sweden

David Phung

[p.*] events

H Event

< name : EString

B PeriodicEvent H SimpleEvent

B Program
= name: EString
[0.1] states
[1..1] startState
[0.1
B StateJump EQ State
= simulating : [1.1] first 5 name : EString
T EBoolean = false = o simulating :
[0."] events T EBoolean = false
[1..1] second o, start: EBoolean
= false
[0.1] lastState|
[0..1] parent
L 0. ftates
[1..1] starfState
| E conditionalEvent] | E simplestate | | E Historystate E XOR_state |

condition : EBoolean
= false

=]

= period : Elnt

[0.1] historyStafe

Figure 2. The meta-model of the language (the part about user-defined type has been stripped out to make it clearer).

TABLE I: Implemented mappings and their parameters.

Domain class Graphical element Style Semantic candidates Import
SimpleState SimpleContainer gradient rectangle | container’s child states _
XORState XOR[Container rectangle container’s child states SimpleContainer,
XORContamer,
ANDContainer
ANDState ANDContainer rectangle container’s child states SimpleContainer,
XORContamer,
HistoryState HistoryNode image container’s reference _
StateJump ElementEdge solid edge, event as all state jumps in _
label program
Event EventSubNode rectangle all events in program _

modified to allow users to create a type and edit it in a sepa-
rate view using the navigate model operation supported by
Sirius. The type view is essentially the same as the program
view with minor differences. Two more classes were also
added as super states, Typelnstance and TypelnstanceShare,
to provide two different ways to instantiate a type.

When an TypelnstanceShare object is created, its content
is empty, it only contains a reference to the instantiated type.
By using semantic candidate expression, we instructed Sirius
to search for states inside this referenced type to display. This
way it appears as if we have created an instance of the type
while in fact, we have only created a different graphical
representation for each state in the type. Any modifications
done in the editor will affect the same semantic object and
be reflected on all graphical representations of that object.
To prevent the changes from the program view to affect
the semantic object, we manually disabled all operations

involving a TypelnstanceShare object. This includes creation,
deletion and renaming of states, edges. The default property
view mentioned above, however, could not be disabled.

The second way to instantiate a type is by using a Type-
Instance object. When created, it will go through all states
in the type and create a copy of each of those states. This
traversing and copy operation is not supported by Sirius so
we wrote our own code. This approach solves the sharing
problem above since the created instance contains actual
copies of the states in the type. However, it introduces an-
other problem as when modifications are made on the origi-
nal objects in the type view, they will not be automatically
propagated to the other copies. Sirius does not provide a
simple way to do this so we implemented our own solution.
Currently, our implementation can only propagate changes
on the attributes of the objects but not the structure of the
tree. Also, the user must actively trigger the propagation as

Implementation of graphical editor using Sirius

Course paper, EDAN70, Lund University, Sweden

TABLE II: Implemented tools and their parameters.

Tool Mapping Precondition Operations
CreateSimple SimpleContainer container must not be simple | create instance, set parent and
state initial name
CreateX{OR XORContainer container must not be simple | create instance, set parent and
state initial name
Create AND ANDContainer container must not be simple | create instance, set parent and
state initial name
CreateHistory HistoryNode container must be xor state and create instance, set paren’s
have no history state reference to this
CreateStateJump EventSubNode _ create instance
CreateEvent EventSubNode _ create instance
ReconnectEdge StateJumpEdge _ change source or target state
EditLabell all states and events _ change name
EditLabel2 StateJumpEdge event must exist change event

we did not succeed in automating this process. We were able
to detect when a change occurs but unable to propagate the
change in the same thread due to a context issue. The con-
cept of context here is native to Sirius and requires domain
knowledge to understand, something which we do not have.

5 Evaluation

Table III presents a summary of the target features and their
implementation results. The results have been successful for
the implementation of statechart features with Sirius being
able to solve the issues we mentioned in section 3.1. Our
implementation shows that the process to create a statechart
editor can be done by simply following the predefined work
steps and make use of already supported Sirius features. The
complexity of the implementation is low and there is no
need for any object oriented programming. In fact, almost
all the work was done graphically in the Sirius editor, only
one small Java service was written in code. This shows a
clear strength of Sirius in facilitating the development of
graphical editors.

Another advantage of Sirius is its ability to prevent errors.
Syntax errors are also automatically detected. During the
implementation, we tested by changing the meta-model so
that the target reference of a state jump must be a simple state.
The result became that if when creating an edge graphically,
any attempts to set a non-simple state as the target will
be ignored, the cursor will also be marked with an invalid
icon to indicate this. The meta-model was then changed
back to the correct way. Certain semantic errors can also be
prevented by the use of mapping rules. Operations violating
these rules will also be ignored and the users will see an
invalid icon on the cursor to indicate that. This can be useful
for users who want to quickly design a number of models
for comparison. Instead of making mistakes and then having

to fix them, Sirius can prevent them from happening in the
first place and thus increase productivity.

It is also worth to note that before one can start using Sirius
and utilize all of its features, certain prerequisite knowledge
is required. In particular, the developer would need to fa-
miliarize himself with EMF, the basic concepts of Sirius and
one of the query languages. These can be argued as a small
investment to pay as they only need to be done once the first
time the developer works with Sirius.

The strength of Sirius lies in its automated work done
by the underlying process. The developer never needs to
explicitly implements operations such as saving, loading
data, handling user input or drawing objects on an Eclipse
view. This can reduce a lot of development time but also make
the developer more reliant on the supported features of Sirius.
The user-define type feature, for example, was not supported
and our effort to implement it ourselves did not meet with
success. Sirius does allow developers to implement their own
features or overwrite certain Sirius’ functions but a high
level of domain knowledge is required °. During our project,
we encountered the context issue which proved difficult to
resolve. As far as we know, Sirius does not provide interfaces
to facilitate coding. It does not help either that Sirius is built
on top of other frameworks and certain knowledge about
the underlying structure of these frameworks is required to
ensure successful coding. From the perspective of a developer
new to the Eclipse frameworks, it might be difficult when
trying to implement a complete new feature in Sirius without
first going through a steep learning process.

®https://www.eclipse.org/sirius/doc/developer/Sirius%20Developer%20Manual html

Course paper, EDAN70, Lund University, Sweden

David Phung

TABLE III: Summary of implementation results.

Feature Success Implementation Sirius support | Reguired understanding
Creation, modification of ves graphically yes basic EMF + Sirius
states, edges and events concepts
Recursive containement ves graphically ves _

Semantic constraints ves graphically + some code ves one of the query languages
User-defined type no graphically + code no underlying frameworks

6 Related work

The focus of our work has mainly been about finding the
strengths and weaknesses of Sirius using the implementa-
tion as an proof-of-concept example. A similar work has
been done to promote another tool called EuGENia by im-
plementing an editor for a simple filesystem meta-model
[1]. EuGENia, however, work at a different level from Sir-
ius. Instead of encapsulating GMF, it facilitates the process
of using GMF by producing intermediate models that can
then be used as inputs to GMF to generate a graphical editor.
This is done by adding annotations to the meta-model of
the language and then transform them to the required GMF
models.

Graphiti is another framework to produce graphical ed-
itors that is somewhat similar to Sirius. Instead of GMF, it
encapsulates GEF (Eclipse Graphical editing framework 7)
with the purpose to hide away its complexity. Work has been
done to compare Graphiti and Sirius with each other in order
to define the pros and cons of each of them [6]. The results
showed that Sirius is a better choice for a number of reasons
such as more supported features, less error prone, more cus-
tomizable. The work also pointed out that for difficult tasks,
deep knowledge of GEF and GMF is required which concurs
with one of the results of our evaluation.

7 Conclusion

In this paper, we have presented our evaluation of Sirius’
strengths and weaknesses together with a number of fac-
tors that should be considered before working with Sirius.
This was done by practically implement an editor for a lan-
guage heavily inspired by statechart with the addition of
user-defined type feature. The results have shown that Sir-
ius has support for all introduced statechart features and
an graphical editor can be produced in a short time. The
user-defined type feature, however, was not supported and
implementing it would require high level of knowledge about
Sirius and the underlying frameworks. For a developer un-
familiar with Eclipse frameworks, a small learning process
must also be done to familiarize with EMF, basic Sirius con-
cepts and one of the query languages. Possible future works
could be to find an approach to make user-defined type

Thttps://www.eclipse.org/gef/

feature possible, or to introduce interfaces to make the im-
plementation of new features easier.

Acknowledgments

I would like to thank my supervisor, Alfred Akersson for
providing me help and guidelines throughout the project.

References

[1] Dimitrios S Kolovos, Louis M Rose, Richard F Paige, and Fiona AC
Polack. 2009. Raising the level of abstraction in the development of
GMF-based graphical model editors. In Proceedings of the 2009 ICSE
Workshop on Modeling in Software Engineering. IEEE Computer Society,
13-19.

Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. 2014. A
tutorial on metamodelling for grammar researchers. Science of Computer
Programming 96 (2014), 396-416.

Douglas C Schmidt. 2006. Model-driven engineering. COMPUTER-IEEE
COMPUTER SOCIETY- 39, 2 (2006), 25.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
2008. EMF: eclipse modeling framework. Pearson Education.

Vladimir Viyovi¢, Mirjam Maksimovi¢, and Branko Perisi¢. 2014. Sirius:
A rapid development of DSM graphical editor. In Intelligent Engineering
Systems (INES), 2014 18th International Conference on. IEEE, 233-238.
Vladimir Vujovi¢, Mirjana Maksimovi¢, and Branko Perigi¢. 2014. Com-
parative analysis of DSM graphical editor frameworks: Graphiti vs.
Sirius. In 23nd International Electrotechnical and Computer Science Con-
ference ERK, Portoroz, B. 7-10.

[2

—

[3

=

[4

flan)

[5

=

[6

—

	Abstract
	1 Introduction
	2 Eclipse modeling framework and Sirius
	2.1 Eclipse modeling framework
	2.2 Sirius
	2.3 Query languages

	3 Features to be implemented
	3.1 Statechart features
	3.2 Additional feature

	4 Implementation
	4.1 Statechart features
	4.2 User-defined type

	5 Evaluation
	6 Related work
	7 Conclusion
	Acknowledgments
	References

