
Dependency Injection in Java
An extension for ExtendJ

Niklas Jönsson
D13, Lund University, Sweden

dat13njo@student.lu.se

Kim Fransson
D13, Lund University, Sweden

dat13kfr@student.lu.se

Abstract
In this paper we discuss the problems of slow execution times
as a result of sub-optimal choices for the underlying data
structures. We present our dependency injection extension
for Java that collects information about library collection
type uses and makes an intelligent choice on what data struc-
ture to use.

Our solution lets the programmer decide if he wants help
from the compiler to make the choice by specifying an in-
terface type on the right hand side of an assignment when
declaring a variable.

Our solution scratches the surface of dependency injection
and achieves performance gains. However there is still a lot
to be discovered and these gains could be greater with more
work.
ACM Reference Format:
Niklas Jönsson and Kim Fransson. January 28, 2018. Dependency
Injection in Java: An extension for ExtendJ. In Proceedings of Project
in computer science (Course paper, EDAN70). ACM, New York, NY,
USA, 5 pages. https://doi.org/

1 Introduction
In software programs the data is stored in various type of
data structures, such as lists, sets and maps. In Java, and
many other programming languages, there exist a collections
framework (library) containing sets of classes that implement
these commonly used data structures. These data structures
work in different ways and they all have their limitations and
advantages[5]. The task of deciding what implementation of
these interface to use can be a boring task for a programmer
that just want things to work.
Today the computers are very powerful and can execute

most of the time consuming operations in a fraction of a
second and a relative slow execution time wont raise any
eyebrows as the absolute execution time is still very low.
This leads to that the programmer will most likely use the
option he is most comfortable with. In larger programs using
the optimal underlying data structure is always of uttermost
importance, as the execution time could multiply and result
in a very long execution time if a non-optimal choice is made.
According to a study made in 2009 [4], expert software en-
gineers at Google made sub-optimal choices for underlying
data structures in C++ applications in an internal benchmark

Course paper, EDAN70, Lund University, Sweden
January 28, 2018.

suite. A speedup of 17% was measured when a single line
change to an underlying data structure was made.

It is hard to extensively test a programwith data of various
sizes and for the programmer to realize that one certain data
structure might not be optimal to use in a certain situation.
It therefore would be preferable if the programmer had the
option to let the compiler decide which data structure that
should be used if the programmer is in doubt of which is
optimal.
There already exists different type of solutions to this

problem, but they are not yet established. The analysis tools
Brainy[1] and Chameleon[7] use offline inspections in order
to produce suggestions to the programmer of which data
structure is optimal. The tool CoCo[8] offers online dynamic
replacement of data structures depending on the situation
and context of a program.
What separates our solution from the above is that we

provide the programmer an option to let the compiler decide
which data structure to use. The actual replacement is done
on the language level and is therefore not dependant on any
external java virtual machine as it can run on the stock java
virtual machine.

The solution is based on the dependency injection tech-
nique, where the programmer can specify when he requires
a variable to be injected with the optimal type. Therefore
the programmer can hand over the tedious task of choosing
the optimal class to someone that knows better (allegedly).
Our dependency injection lets the programmer skip the task
of creating boilerplate code for factories and manual depen-
dency injection. This will result in more modular, more clean
and more test friendly code as well as it will save time for
the programmer. The injection is done on the language level
before the code is compiled into bytecode which results in
the same portability as Java.

To evaluate our solution we used the three different bench-
marks. The first stage of evaluation was done with micro-
benchmark. Themain evaluationwas donewith the SPECjvm2008
benchmark suite. The results can be seen in section 5. Our
results from the micro-benchmark showed that our solution
did increase the performance significantly, however the re-
sult from SPECjvm2008 only showed minor performance
gains.

https://doi.org/


Course paper, EDAN70, Lund University, Sweden Niklas Jönsson and Kim Fransson

2 ExtendJ
Our solution uses the extensible Java compiler ExtendJ[2]
which is built using the declarative attribute grammar system
JastAdd1. ExtendJ allows modules to be added which extends
the support of the compiler. An informative image of the
structure and the modular architecture can be seen in figure
1.

ExtendJ was developed at Lund University as a research
project and has since then been updated rigorously and sup-
port for new versions of Java has been added. As of today
the compiler supports Java 8 but the bytecode generation for
Java 8 is not yet fully supported.

ExtendJ is open source and available under the modified
BSD license.

Figure 1. Overview of ExtendJ [3]

3 Language extensions
Our solution extends the Java language with new function-
ality, it is now possible initiate certain interfaces by writing:

Interface i = new Interface();

At this time we have support for the common interfaces
List, Set and Map that are found in the standard library.

The ExtendJ compiler will parse an interface initialization
and decide whether it is able to perform an injection or not
by mapping the interface type to a whitelist of supported in-
terfaces. If the interface is supported it will run an algorithm
that replaces the interface initialization with the deemed
most fitting class that implements that interface.

We have also added variable declaration annotations to the
java language to allow the programmer to enforce behaviour
of the data structures. These annotations are placed before
declaring a new variable:

@Annotation Interface i = new Interface();

All code replacement is done before any byte-code is gen-
erated. Our solution is portable as the generated code is base
java compliant.

1http://jastadd.org/web/

4 Implementation
To decide which implementation of the interface to replace
with, we have designed and implemented a decision tree
based static analysis along with a dynamic analysis aspect.
The dynamic analysis is only needed if no solution can be
found in the static analysis.

4.1 Static analysis
In the static semantic analysis the compiler looks for specific
annotations written by the programmer. These annotations
describe requirements for the order of elements in the data
structure. We have added two new annotations @Sorted and
@InsertionOrder. These annotation are added to the vari-
able declaration. @Sorted indicates that the elements should
be sorted according to the elements natural sorting order.
@InsertionOrder indicates that the elements should be or-
dered in the order they were insorted. Depending on which
annotation is used, a data structure is automatically selected
because the programmer enforces some certain behavior.

4.2 Dynamic analysis
In the dynamic analysis the compiler compiles a version of
the program for each implementation of the data structure in
question. Each of these versions are executed several times
and a mean execution time is calculated. The implementation
with the lowest mean execution time is deemed the best
choice for the context and is chosen as the replacement. If
the analysis would fail a default implementation is chosen.

4.3 List replacement
The classes that can be injected from a List interface is
ArrayList and LinkedList. Table 1 shows the difference in
time complexity in big O notation for the two implementa-
tions. To decide which implementation to select the compiler
makes a dynamical analysis. If the dynamical analysis fails,
the compiler uses ArrayList as the default choice, although
it may not be optimal.

Table 1. Time complexity comparison for List[6]

get add contains next remove(0) iterator.remove

ArrayList O(1) O(1) O(n) O(1) O(n) O(n)

LinkedList O(n) O(1) O(n) O(1) O(1) O(1)

4.4 Map replacement
For Map the class choices is between EnumMap, TreeMap,
LinkedHashMap and HashMap.

The compiler first check the key element type. If the key is
of type Enum the choice is EnumMap. EnumMap is implemented
for handling enum keys extremely efficient2, As seen in table
2.
2https://docs.oracle.com/javase/7/docs/api/java/util/EnumMap.html



Course paper, EDAN70, Lund University, Sweden

After that the compiler checks against available anno-
tations. If the programmer specifies the @InsertionOrder
annotation, LinkedHashMap is chosen as this implementa-
tion is the only implementation that preserves the insertion
order. If @Sorted is present the compiler chooses TreeMap
as this is the only implementation that sorts the elements in
the natural ordering of the element type. These implementa-
tions may not be optimal but are chosen as they satisfy the
programmers demand.

If the compiler has not yet decided which implementation
to use it moves on to the dynamic analysis. If the dynamical
analysis would fail, HashMap is the default choice.

Table 2. Time complexity comparison for Map[6]

get containsKey next notes

HashMap O(1) O(1) O(s/n) s is the table capacity

LinkedHashMap O(1) O(1) O(1)

EnumMap O(1) O(1) O(1)

TreeMap O(log n) O(log n) O(log n)

4.5 Set replacement
The Set classes that are available for selection is EnumSet,
HashSet, TreeSet and LinkedHashSet and the time com-
plexity values can be seen in table 3.
If the element type is Enum, EnumSet is selected because

it is implemented using bit vectors which are very compact
and efficient3.
If the @Sorted or @InsertionOrder annotation is used

the TreeSet respectively LinkedHashSet is selected.
If the dynamical analysis would fail, HashSet is the default

choice.

Table 3. Time complexity comparison for Set[6]

add contains next notes

HashSet O(1) O(1) O(s/n) s is the table capacity

LinkedHashSet O(1) O(1) O(1)

EnumSet O(1) O(1) O(1)

TreeSet O(log n) O(log n) O(log n)

5 Evaluation
All the tests are executed on a quad-core machine with Intel
8th generation i5 1.60Ghz processor, 8GB RAM, running
Ubuntu 17.10.

3https://docs.oracle.com/javase/7/docs/api/java/util/EnumSet.html

5.1 Micro benchmark
In the early stages of development we tested our solution
on a self-written program that simply iniated two sets of
integers and floats and added one million values into each.
The program then iterated through each set and computed
the sum of these values. The values that were added were
deterministic so that each run produced the same sum output.

In themodified version the sets were initialized as HashSets.
However after running it through our compiler, it suggested
that these sets should actually be LinkedHashSets. We run
both versions of the program 50 times each and calculate the
mean execution time and 90% confidence intervals. To take
JVM warm-up time into consideration we discard the first
10% of the runs when calculating the mean and confidence
interval. For the original version we got a mean time of 2.041
and the 90% confidence interval (1.217, 2.864). For the modi-
fied program that was outputted by our compiler we got the
mean time of 1.735 and the 90% confidence interval (1.144,
2.325). The modified program had a 15% decreased mean
execution time. The confidence intervals do overlap but the
worst case execution time of the confidence interval is 19%
lower in the modified version.

5.2 SPECjvm2008
We used the SPECjvm20084 benchmark suite as the real test
for evaluating our solution. SPECjvm2008 is a benchmark
suite for measuring the performance of a JRE (Java Runtime
Environment). It contains several sub-benchmarks focusing
on java functionality.
First we analyzed the sub-benchmarks in order to find

possible data structures that could be replaced. We ran the
benchmark suite with all sub-benchmarks that contained
a possible data structure replacement and saved the result.
Then the sub-benchmarks which had data structures that
could be replaced was used as input to our compiler. The
compiler generated new class files which we used to replace
the original files in the benchmark suite. We ran the bench-
mark again for the modified files with identical options as
for the original files.
Both the unmodified and modified benchmark suite was

ran for 10 times each, each run took around 30 minutes. Each
sub-benchmark has a 2 minutes warm-up time and 4 minutes
measured runtime, the result is measured in operations per
minute. The higher operations per minute the better.

Figure 2 shows, for each sub-benchmark test, the average
execution time for the benchmark in milliseconds.
As seen in figure 2 the results from the two versions are

almost identical, with a slight favor to the modified version.
However the 90% confidence intervals of the two versions
was almost equal and therefor this does not prove that the
modified version is better. This is most likely because the
benchmark suite did not have many data structures that

4https://www.spec.org/jvm2008



Course paper, EDAN70, Lund University, Sweden Niklas Jönsson and Kim Fransson

Figure 2. Evaluation result

could be replaced by our compiler and therefor our modifica-
tions was not enough to affect the end result in a noticeable
manor.

5.3 JaCoP
We did some evaluation testing on the constraint solver
library, JaCoP5. The library contains a kind of benchmark
suite in the form ofmany example programs that are included
in the library jar file.

Our compiler did produce decreases in execution time of
2% for some of the example programs but the modification
was done in a core component of the library, which changed
a certain HashSet to a TreeSet. This modification caused
other example programs to crash as the type used in the data
structures did not always implement Comparable, which is
demanded by a TreeSet.

6 Limitations & future work
Albeit our solution is able to dynamically compare the ex-
ecution time between implementations of a data structure,
and should theoretically choose the optimal choice for the
context, it still has alot of improvements that could be done.
Our solution is at this moment limited to Map, Set and

List. As seen in the result section this does limit the result
of our compiler in a negative way. In order for our com-
piler to be more successful, support for more interfaces to
inject must be added. We would also like to extend the de-
pendency injection to allow for user specified interfaces and
their implementations to be injected.
The static analysis in our solution is quite limited and

could be improved in many ways. An idea for future work
for the static analysis could be to do more extensive type
checking in order to eliminate certain options for the dy-
namic analysis. E.g. if the type used in the data structure is
not Comparable then the options of TreeSet and TreeMap

5jacop.osolpro.com

should be eliminated. We would also like to add more anno-
tations, such as @Synchronized/ThreadSafe to just tell the
compiler to wrap the data structure in a thread safe collec-
tion.

An interesting addition to the dynamic analysis would be
to add a wrapper class for the data structure in order to count
the number each operation is used on the data structure. This
information could be used to come up with an replacement
instead of running the program several times to get an mean
execution time. This could be advantageous if the run time
of a single instance is quite long.

Lastly, inspired by Chameleon[7], we could add an aspect
of optimizing the memory gains instead of the execution
time performance. This type of optimization’s is desirable
for e.g. IoT6 machines as they run on lowmemory hardware.

7 Related work
There exists some research project in this area [1][7][8]. First
out was Chameleon which is an adaptive technique that fo-
cuses on memory usage optimization. It collects runtime
statistics and heap-related information from the garbage col-
lector. Chameleon then fed the data into a hand-constructed
model to determine if any data structure should be changed.
The output is a file with a list of data structure replacement
recommendations.

Brainy is similar to Chameleon but instead it focuses on ex-
ecution time optimization. Instead of a constructed model it
uses an offline machine learning model. An important aspect
is that Brainy is not restricted to a language with runtime
features such as Javas garbage collector. Both Brainy and
Chameleon analyses the programs and makes recommenda-
tions for the programmer but does not do any actual code
replacement. This implies that the programmer needs to do
manual changes, which can be a tedious task if there is a lot
of replacement suggestions.

In 2013, inspired by Brainy and Chameleon, Xu Guoqing
at University of California developed an online adaptive re-
placement technique for Java collections, called CoCo. This
technique uses an own written library to wrap data struc-
tures into so called combo structures to be able to dynami-
cally identify optimal choices and perform run-time replace-
ment.
One of CoCo’s limitations is that they introduce space

overhead with their combo structures aswell as you will
need the whole CoCo library and their own compiler to run
use the CoCo solution. With our solution the replacement is
done at language level which means that it can run on any
Java Virtual Machine (JVM), however the replacement is not
done at run-time as by CoCo.

6Internet of Things



Course paper, EDAN70, Lund University, Sweden

8 Conclusions
This paper presents a language-level optimization solution
using the dependency injection technique. We added a new
language extension in Java using the extensible Java compiler
ExtendJ, by writing new Interface the compiler will replace
the interface with the most optimal class that implements
that interface.
The current version of our solution does optimize pro-

grams, however not as well as we would have though. As
discussed in section 7 there are many possible improvements
that would make the analysis better and most likely increase
the performance gain. From our research we have concluded
that data structure selection optimization’s are useful and
have the potential to increase performance for most types of
programs. Because of the flexibility of a language-level based
solution compared to solutions that are reliant on third party
libraries we believe that it is a good idea to research this area
further.

Acknowledgments
We would like to thank our supervisor Christoph Reichen-
bach, for providing valuable feedback throughout the project.

References
[1] Brian P. Railing Nathan Clark Santosh Pande Changhee Jung, Sil-

vius Rus. 2011. Brainy: Effective Selection of Data Structures. 1, 1
(2011), 86–97. https://dl.acm.org/citation.cfm?id=1993509

[2] Torbjörn Ekman and Görel Hedin. 2007. The jastadd extensible java
compiler. In Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems and applications (OOPSLA
’07). ACM, New York, NY, USA, 1–18. https://doi.org/10.1145/1297027.
1297029

[3] Emma Söderberg Jesper Öqvist, Görel Hedin. 2015. Build your own
Java Code Analysis with ExtendJ [PowerPoint slide 6]. Retrived from
https://bitbucket.org/extendj/extendj/downloads/2015%20SPLASH
%20Tutorial%20ExtendJ.pdf.

[4] S.Rus L.Liu. 2009. A Context Sensitive Performance Advisor for C++
Programs. Proc. of the 2009 International Symposium of Code Generation
and Optimization 1, 1 (2009). https://dl.acm.org/citation.cfm?id=1545076

[5] William McAllister. 2009. Data Structures and Algorithms using Java.
Jones and Bartlett Publishers.

[6] Philip Wadler & Maurice Naftalin. 2009. Speed Up the Java Development
Process. O’Reilly Media.

[7] Eran Yahav Ohad Shacham, Martin Vechev. 2009. Chameleon: Adaptive
Selection of Collections. 1, 1 (2009), 408–418. https://dl.acm.org/citation.
cfm?id=1542522

[8] Guoqing Xu. 2013. CoCo: Sound and Adaptive Replacement of Java
Collections. 1, 1 (2013), 1–26. https://link.springer.com/chapter/10.1007/
978-3-642-39038-8_1

https://dl.acm.org/citation.cfm?id=1993509
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/1297027.1297029
https://dl.acm.org/citation.cfm?id=1545076
https://dl.acm.org/citation.cfm?id=1542522
https://dl.acm.org/citation.cfm?id=1542522
https://link.springer.com/chapter/10.1007/978-3-642-39038-8_1
https://link.springer.com/chapter/10.1007/978-3-642-39038-8_1

	Abstract
	1 Introduction
	2 ExtendJ
	3 Language extensions
	4 Implementation
	4.1 Static analysis
	4.2 Dynamic analysis
	4.3 List replacement
	4.4 Map replacement
	4.5 Set replacement

	5 Evaluation
	5.1 Micro benchmark
	5.2 SPECjvm2008
	5.3 JaCoP

	6 Limitations & future work
	7 Related work
	8 Conclusions
	Acknowledgments
	References

