Extending Java with new operators using Extend]

Wawrzyn Chonewicz
E13, Lund University, Sweden
elt13wch@student.lu.se

Abstract

We have used the extensible Java compiler Extend] to add
two new operators to the java language: print-assign and a
simplified spread operator. The print-assign operator extends
the assignment operator by also printing, and the spread op-
erator creates a new array by applying a method to each
element of an array. In this paper we describe the implemen-
tation, which consists of both static analysis and bytecode
generation, and highlight some interesting problems.

We evaluate the applicability of our operators by scanning
a few open-source projects for use cases. We also evaluate
the performance of our extension by compiling a few open-
source projects, and we conclude that there is no noticeable
difference in compilation time with or without our extension.

1 Introduction

In this report we describe how we added two new Java oper-
ators to the extensible Java compiler Extend].

In our extension, the new operators we implemented are:
print-assign (.=) and spread (*.). These operators are meant
to work as syntactic sugar for common code patterns.

The print-assign operator is a new operator we have not
seen before. It works like the ordinary assignment operators,
except that it also prints the name and runtime value of
the assigned variable. We designed this operator to be a
convenient tool for debugging.

We implemented a simplified version of the Spread opera-
tor from the Groovy language [4]. That is, the operator calls
a method on each element in a collection and returns the
result as a collection. However, our simplified version only
allows spreading of arrays. Our implementation of the spread
operator does not allow several spreads, qualified access or
method calls. More functionality was initially planned, but
was cut due to the project’s limited time.

We will mainly focus on the spread operator in this pa-
per, since it proved to be much more complex to implement
compared to print-assign. We will highlight some interesting
problems we had during the implementation.

We evaluate our extensions by comparing compile times,
and by showing to what extent our operators could replace
code used in existing open-source projects.

This project is a part of the Project in Computer Science
course at Faculty of Engineering LTH, and there have been
previous efforts in implementing operators using Extend] [1].

Course paper, EDAN70, Lund University, Sweden
January 13, 2018.

Filip Stenstrom
E13, Lund University, Sweden
elt13fst@student.lu.se

However, this project is starting from fresh, and is therefore
independent of previous ones.

To evaluate our implementation we scanned open-source
projects for use cases of the operators. The result was that
there were few cases where the spread operator could be
applied, since the operator only supported arrays and not
Iterables. For print-assign we found no use cases, however
it is meant to be a debugging tool. This means that its usage
never never makes it to public repositories.

There exist other extensible compilers. One such example
is ableJ [3] which much like Extend] uses grammar attributes.
Our implementation is limited to Extend] though, and we
have therefore not made an comparison to other extensible
compilers.

2 Background

In this section we give an overview of Extend] and how to
generate bytecode by using a method called desugaring.

2.1 Extend] overview

Extend] is an implementation of a Java compiler using at-
tribute grammars. Extend] is built with JastAdd, a meta com-
pilation framework supporting reference attribute grammars.
(2]

Static code analysis is performed by attributes, and code is
generated by traversing the abstract syntax tree (AST) while
accessing attributes to compute the bytecode. Extend] allows
for modification and extension of the scanner, parser, AST at-
tributes, and abstract grammar specifications. The attributes
can be modified by using aspect oriented programming with
JastAdd.

Extensions to Extend] are developed as modules. Modules
consist of aspects, attributes, scanner and parser additions,
and AST type declarations. Extend] has a base implementa-
tion of Java 1.4 and modules for each new version of Java, up
to Java 8. Each module depends on the base and the earlier
versions.

2.2 Desugaring

A simple way to avoid writing custom bytecode is to use a
method called desugaring. Desugaring means that a complex
language construct is translated into a normalized form us-
ing simpler language constructs. Desugaring is analogous
to finding the code in question and then replacing it with
code that is written using existing language features, and
then compiling that code instead. We use this method to
implement both the spread and the print-assign operator.



Course paper, EDAN70, Lund University, Sweden

Instead of writing a bytecode generation method for the
new language construct, the existing ones are used on the
generated sub tree.

By using desugaring, the implementation challenge is to
construct an AST translations for a new language feature.
The upside of this is that the language developer isn’t re-
quired to have the domain knowledge in order to write Java
bytecode.

The downside is that the solution might not be as optimal
as it could have been had it been written in bytecode. This is
because desugared code performs certain known operations
on specific data. In many cases the state of the virtual ma-
chine as well as some things about the data operated on are
known, which allows for writing bytecode that doesn’t have
to work for cases that don’t conform with that knowledge,
hence allowing for more optimal code.

3 Implementation

In this section we describe the technical aspects of the project.
In order to make the code snippets understandable, some
parts might be left out, or be written in pseudo-code. A link
to the source code can be found in Appendix B

For both operators, we first extended the scanner, parser
and abstract grammar. After that, we implemented static
analysis followed by code generation.

3.1 Parsing

In order for the compiler to accept the new operator syntax,
the language grammar had to be extended with new produc-
tions. This was made easy by the Extend] framework which
combined the parser specification for Java itself with the
additions from our project.

The changes in order to add the print-assign operator were
to simply specify the operators’ grammar. The only differ-
ence from normal assignment was the operator token itself.
The production for an existing non-terminal, assignment,
was appended with our own production, allowing for the
usage of the new operator the same way the normal assign-
ment operator is used:

Expr assignment =
postfix_expression PRINTASSIGN assignment_expression

We also allowed to use the print-assign operator during ini-
tialization of new variables. In order to add this, the variable
_declarator production had to be appended with a con-
struction that, like in the previous case, only differed from
normal assignment by the operator token itself:

Wawrzyn Chonewicz and Filip Stenstrom

VariableDeclarator variable_declarator =
IDENTIFIER PRINTASSIGN initialiser

The parser extension for the spread operator was consid-
erably more involved. Because there are many things that
could go wrong, the implementation was done incrementally
during the course of the project. This way, we could make
sure that the small additions were working correctly before
adding the next one. In case something worked incorrectly,
there was a good chance that the anomaly originated from
the feature currently being added.

The language extension for spread was appended to the
existing non-terminal primary_no_new_array, in order to
conform with the precedence rules in Groovy. The specifica-
tion was as follows:

Expr spread_dot =
simple_name SPREAD_DOT method_invocation

Expr primary_no_new_array =
spread_dot

With this production, spread could be used with an identifier
and an unqualified method invocation syntax (also defined
in the parser specification), for example as follows:

System.out.prinln(array *. methodName());

Later, the grammar was extended in order to allow spread
expressions to be standalone statements by adding spread to
the statement_expression production:

array *. methodName(); //Result is being discarded

Finally, in preparation for allowing to chain spread expres-
sions, spread operators production was extended in order to
accept most primary expressions on the left-hand side, as
for example a method call or even a spread expression itself:

getStringArray() *. toString() *. tolLowerCase();

This however required major refactoring of the grammar in
order to avoid shift-reduce conflicts. First, a new production,
primary_no_lambda was created, containing a copy of the
productions from primary except for lambda_expression.
Then primary_no_new_array was overwritten, allowing it
to be:



Extending Java with new operators using Extend)

Expr primary_no_new_array :=
lambda_expression
| spread_dot
| primary_no_lambda

)

Finally, the spread grammar was modified to be either ac-
cept either an identifier on the left-hand side or a primary
expression with the exception of 1ambda_expression:

Expr spread_dot =
simple_name SPREAD_DOT method_invocation
| primary_no_lambda SPREAD_DOT method_invocation

)

These parser rules effectively disallow for a lambda expres-
sion to be on the left-hand side of the spread expression,
while not completely removing lambdas from the language.
The reason for this can be explained with the following ex-
ample:

arr -> arr *. someMethod();

The above code could construct either an AST where the
lambda expression arr -> arr is being spread, or an AST
where a lambda containing the spread expression arr *.
someMethod().

We decided to not include spread chaining in the release
due to lack of time to solve an issue with bytecode generation.
The grammar was further constrained to disallow that by
removing spread production from the expressions allowed
to be on the left-hand side. The ability to use richer language
constructs like method invocations and array accesses on
the left-hand side still made it to the release however.

3.2 Reuse of old constructs

In order to avoid reinventing the wheel, operators in this
project extend other, already existing operators in the java
language. The print-assign operator, which as mentioned
before, technically consists of two separate AST classes,
PrintAssign and PrintAssignVariableDeclarator, ex-
tend AssignSimpleExpr and VariableDeclarator respec-
tively. Because of this, all of the static analysis like type and
name checking is inherited without modification.

The spread operator extends the dot operator. The built-in
dot operator is used for qualified access in Java. Because the
behavior of the dot operator is not desired in all cases in
our spread operator, some things needed to be tweaked, like
the method lookup and type analysis. Example usages of the

Course paper, EDAN70, Lund University, Sweden

Dot-operator can bee seen in the code sample below:

this.a = 10; //Member access
x.m(); //Method access
new A().foo(); //Method access

3.3 Static analysis

The print-assign operator did not require any type of static
analysis that was not already inherited from the assignment
operator and variable declarator.

For the spread operator, the first and obvious analysis that
is performed is type checking, to make sure that the left-
hand side is an array. This was done using already existing
methods provided by the Extend] framework:

syn Collection<Problem> SpreadDot.typeProblems() {
if(!getLeft().type().isArrayDecl()){
//Error

3

Another issue that could occur is when the programmer tries
to spread an array using a method that is not a member of
the objects contained in the array that is being spread. This
case is handled in a different manner. Instead of explicitly
checking if the method is a member, we override an attribute
equation responsible for finding methods.

Because the spread operator extends the dot-operator, by
default, the 1lookupMethod equation checks if the method is
a member of the left-hand side object. This is wrong because
the method is actually a member of the elements of the left-
hand side. This error was corrected as follows:

eq Spread.getRight().lookupMethod(String name) {
ArrayDecl var = getLeft().type();
TypeDecl elemType = var.elementType();

return elemType.memberMethods(name);

The above code will be automatically used by name analysis
in the Extend] framework to check if the elements actually
have a member method with given name, and at the same
time, the reference stored in the Spread class will point to
the correct method declaration. Because of that last part,
no additional work had to be done in order to get a correct
reference.

Type analysis for expressions is performed with attribute
named type (). To ensure the correct result, the type () equa-
tion was overriden to return the correct type. The type of the
result from the spread expression is an array of the return



Course paper, EDAN70, Lund University, Sweden

type of the method used to spread the left-hand side array:

eq type() {
if (getRight().type().isVoid()) {
return typeVoid();
} else {
return getRight().type().arrayType();
}

As can also be seen from the above code, our implementation
of spread also allows for using void methods for spreading. In
that case, the result is void, since it is pointless and impossible
to create an array of type void.

3.4 Bytecode generation

We chose to use desugaring for both operators. This also
made sense since both operators are essentially nothing more
than syntactic sugar. However, despite the same method
being used for both operators, the desugaring of the spread
operator was significantly more challenging.

In order to build a correct AST, we used a class called
JavaDumpTree, that is a part of Extend]. Instead of compiling
Java code into a binary, it only parses the code and constructs
an AST, after which it prints it in a human-readable format
on standard output. Using this tool, it was considerably eas-
ier to write the parts of AST used for desugaring. We used
it to determine the AST structure we needed to build for
desugaring into a desired form.

We also used DrAST[7] which is a graphical AST-inspection
tool. DrAST uses a compiler built with JastAdd and a source
file as input and shows the graphical representation of the
AST and each node’s attribute values.

The base for our desugared spread is a for-loop. We de-
cided to use for-loop over Java streams, since the latter
would need different types of method calls depending on
whether the return type was a primitive or not.

Some problems we had during bytecode generation were
related to using JastAdd and creating non-terminal attributes
(NTAs). One problem was that we used an NTA inside an-
other NTA, when one requirement is that NTAs only may
contain freshly created nodes (nodes that already exist in
the AST may not be referenced).

Another problem was that we declared a node in the
method for creating an NTA, and then used an NTA belong-
ing to this new node. The problem was that the NTA inside
the NTA used an inherited method from the node. Since the
node did not yet exist in the AST, but was a temporary ob-
ject in the method, no inherited attributes were created. This
resulted in unexpected NullPointerExceptions. Without
sufficient experience in using JastAdd, these kind of problems
were hard to debug.

Wawrzyn Chonewicz and Filip Stenstrom

3.4.1 Print-assign

Desugaring of the print-assign operator was relatively straight
forward. One reason for this is because the print-assign state-

ment can simply be turned into an assignment and a standard

output printout. The only difficulty in implementing this op-

erator is that it is technically two separate operators, not

one. One of them is used when an already existing variable

is assigned a value. The second case is when a new variable

is declared with an initial value.

The idea is to convert the following statements:

int a .= 10;
a .= 15;

into the following:

int a = 10;
System.out.println("a = " + a);
a = 15;

System.out.println("a = " + a);

In order to add this to the compiler, we simply override a
method called createBCode, which is responsible for byte-
code generation for our operator, and make it generate the
bytecode for the assignment first and the printout second.
Because our operator class extends the assignment operator,
we did not have to handle the assignment part of the print-
assign code generation. We instead only had to generate
code for printing the result:

public void PrintAssignExpr.createBCode(CodeGeneration gen) {
super.createBCode(gen);
desugared() .createBCode(gen);

Of course, analogous code was written for variable decla-
ration with initialization value. The desugared() method
constructs a tree with the printout statement. For the sake of
brevity, we will omit the code that does this, as it gets large
for even small trees.

On top of printing the variable contents, print-assign will
also detect if the variable to be printed is an array, and if so, it
will print the contents of the array using Arrays.toString
or Arrays.deepToString for arrays with more than one
dimension. This was done by checking if the variable is an
array, and if so, constructing an AST for the following code
instead:

System.out.println("a=" + Arrays.toString(a));



Extending Java with new operators using Extend)

3.4.2 Spread

The process of desugaring, despite requiring considerably
more work, is essentially the same as desugaring of the print-
assign operator. There are however some differences which
need to be discussed.

To give an example, to desugar the following code:

arr *. method(argl, arg2)

The first step, as before, is to decide to what code the opera-
tor should be translated to. In the example, arr is an array
of objects that have a method called method(...) which
returns type String. The result of desugaring in this case
should be:

String[] newArr = new Stringl[arr.length]
for (int i = @; i < arr.length; i++) {

newArr[i] = arr[i].method(argl, arg2);
3

(return newArr;)

It is the compilers task to find and replace the name of the
array on the left-hand side, the method signature and the
return type in the general case.

The last return statement is written in parenthesis because
technically it is not present in desugared code. This is one
of the big differences from the print-assign operator. Spread
is an expression, meaning that its result should be left on
the stack of the JVM for something else to use. In contrast,
print-assign does its job and the stack remains unchanged.

When the compiler generates the bytecode, it computes
the type of resulting array, the array to spread and the
method to use for spreading using static analysis, as ex-
plained in previous sections. Because the operator also works
on void methods, there are two different AST trees that can
be generated. Which one is chosen depends of the type of
the spread expression.

In cases where there is a resulting array, it needs to be
left on the stack. This is done by generating bytecode for a
VarAccess to the resulting array.

4 FEvaluation

In this chapter we evaluate to what extent our new operators
are applicable in a few open-source projects. We also evaluate
the performance of the extensions by comparing compilation
times with and without the extensions for a few other open-
source projects.

4.1 Performance

In order to make sure that our additions didn’t cause any
unnecessary delays or errors, we used both an unmodified
Extend] compiler as well as our compiler on open source

Course paper, EDAN70, Lund University, Sweden

Project No additions | With additions
ant-1.8.4 28.62 27.89
argouml-0.34 54.47 54.95
azureus-4.8.1.2 93.33 89.88
cayenne-3.0.1 43.10 43.01
cobertura-1.9.4.1 | 10.89 11.26

antlr-4.0 6.47 6.48
aspectj-1.6.9 99.29 96.59
castor-1.3.1 46.84 43.64
checkstyle-5.1 15.41 10.02

Table 1. Average time it takes to compile a project. Figures
are in seconds.

projects from Qualitas Corpus. The averages of five are pre-
sented in Table 1.

As can be seen in the results, it appears that the additions
of the operators had no effect on other parts of the Extend]
compiler.

4.2 Applicability

We scanned large open-source projects, see Table 2, to find
possible applications for our operators. For spread we found
few applications, while we found none at all for print-assign.

The tool we used for scanning was pcregrep. For print-
assign, we scanned for uses of System.out.println. For
spread with arrays only, we scanned for indexed for-loops
that only invoked a single method call on each element in
an array. When we scanned for Iterable, the pattern instead
included a for-each-loop. For the regular expressions, see
appendix A.

For the print-assign operator it was expected to find no
uses, since it is intended use was during development and
debugging as a quick replacement for System.out.println.
Based on experience, we believe that when the code has
been cleaned up and is ready for production, there are few
times when the desired output is a variable name and its
String representation. However, we didn’t consider logging
frameworks when we scanned for potential uses. The print-
assign operator was not designed to compete with the more
thorough loggers: it was designed to be a convenient solution
in the absence of a real logger.

We think that the reason why we found few applications
for the spread operator is that our implementation is limited
to arrays. It is therefore of limited use since collections that
implement Iterable are almost always preferred over basic
arrays. We confirmed this, by also scanning for possible
applications of spread on Iterable objects. The result is
shown in Table 2. The table also includes the total number
of for-loops used in each project.



Course paper, EDAN70, Lund University, Sweden

Project Array | Iterable | for-loops
Spring Boot 1 55 370
Elasticsearch 20 233 3291
Guava 2 84 2204
RxJava (ReactiveX) | 0 15 601

Table 2. Number of opportunities to use spread operator
instead of for-loops in open-source projects. Total amount
of for-loops is also included.

5 Related work

There exist other compilers than Extend] that can be used
for creating language extensions to Java.

One of them is Polyglot [8] which is a source-to-source
compiler.

Another extensible compiler framework is able] [3]. This
framework only implements Java 1.4 though, and there are
few extensions, including some for Java 5. Like Extend],
able] is also built using attribute grammars. However, able]
is written in an attribute grammar language called Silver [10]
instead of JastAdd. There is also a corresponding version for
the language C: ableC [6].

Although it would be possible to implement the operators
in a non-extensible compiler such as javac, the benefit with
using an extensible compiler such as Extend] is that all modi-
fications are done in the new modules instead of the original
source files. Creating extensions and maintaining them is
therefore also comparatively easier.

One way to interact with the compiler in Java is by us-
ing predefined annotations or creating annotation proces-
sors [9]. By using annotation processors, static analysis and
new source files can be created before compile time. Like
extensible compilers, annotation processors add extended
functionality to the compiler. However, they can’t be used to
create new operators since they can’t modify the language
grammar.

6 Future work

One improvement for print-assign would be to add a flag
to the compiler such that the printing can be enabled or
disabled. This way debug code could be kept in the release
and re-enabled without the necessity of recompiling the
project.

For our spread operator to behave like Groovy’s, there
is still a lot of work to do. The two main parts that need
to be done is to allow spread of Iterables, and to allow
expressions consisting of multiple spreads, qualified accesses
and method calls.

Since our implementation of spread only applies to arrays
at the moment, it will also be necessary to consider the
return type when spreading Iterables. One intermediate

Wawrzyn Chonewicz and Filip Stenstrom

step would be to implement for Lists first, and return an
ArrayList when nothing else is explicitly stated.

Unlike Groovy’s spread operator, ours cannot handle ex-
pression consisting of multiple spreads, qualified accesses
and method calls. For these constructions to work, further
work needs to be done with both parsing and bytecode gen-
eration.

The Groovy implementation also handles the use of spread
on collections where the elements may be null by returning
null. Our implementation instead throws a NullPointer
-Exception. One possible solution to mimic this behaviour
would be to first implement a null-safe operator (like the one
in Groovy[5]) and utilize it in the implementation.

7 Conclusion

In this paper we have discussed our implementation of the
operators print-assign and simplified spread as an extension
to Extend].

We scanned open-source projects for applicability of our
new operators and concluded that print-assign has no use
in finished code. We also concluded that spread, limited to
arrays, had few to no uses in open-source projects’ code.
However, we also showed that the applicability would have
increased if we had allowed spreading of Iterables.

Future work can be done for the spread operator by imple-
menting the same functionality as for the spread in Groovy.
A compiler switch can also be added for turning on and off
printing with print-assign.

Acknowledgments

We’d like to thank Jesper Oqvist, our supervisor and the
maintainer of Extend], for helping us with tricky parts of
parsing and code generation in Extend], in addition to the
feedback on this paper.

References

[1] Hans Bjerndell and Linus Lexfors. 2016. Extending Java with new

operators. (2016). http://fileadmin.cs.Ith.se/cs/Education/EDAN70/

CompilerProjects/2016/Reports/BjerndellLexfors.pdf

Torbjorn Ekman and Gorel Hedin. 2007. The jastadd extensible java

compiler. In Proceedings of the 22nd Annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, Richard P.

Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr.

(Eds.). ACM, 1-18. https://doi.org/10.1145/1297027.1297029

Erik Ernst (Ed.). 2007. ECOOP 2007 - Object-Oriented Programming,

21st European Conference, Berlin, Germany, July 30 - August 3, 2007,

Proceedings. Lecture Notes in Computer Science, Vol. 4609. Springer.

https://doi.org/10.1007/978-3-540-73589-2

[4] Apache Groovy. 2017. Groovy Documentation. (2017). http://docs.
groovy-lang.org/latest/html/documentation/#_spread_operator

[5] Apache Groovy. 2017. Groovy Documentation. (2017). http://
groovy-lang.org/operators.html#_safe_navigation_operator

[6] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017.
Reliable and automatic composition of language extensions to C: the
ableC extensible language framework. PACMPL 1, OOPSLA (2017),
98:1-98:29. https://doi.org/10.1145/3138224

[2

—

[3

[t}


http://fileadmin.cs.lth.se/cs/Education/EDAN70/CompilerProjects/2016/Reports/BjerndellLexfors.pdf
http://fileadmin.cs.lth.se/cs/Education/EDAN70/CompilerProjects/2016/Reports/BjerndellLexfors.pdf
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1007/978-3-540-73589-2
http://docs.groovy-lang.org/latest/html/documentation/#_spread_operator
http://docs.groovy-lang.org/latest/html/documentation/#_spread_operator
http://groovy-lang.org/operators.html#_safe_navigation_operator
http://groovy-lang.org/operators.html#_safe_navigation_operator
https://doi.org/10.1145/3138224

Extending Java with new operators using Extend)

[7] Joel Lindholm, Johan Thorsberg, and Gorel Hedin. 2016. DrAST: an

—

inspection tool for attributed syntax trees (tool demo). In Proceedings of
the 2016 ACM SIGPLAN International Conference on Software Language
Engineering, Amsterdam, The Netherlands, October 31 - November 1,
2016. 176-180. http://dl.acm.org/citation.cfm?id=2997378

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. 2003.
Polyglot: An Extensible Compiler Framework for Java. In Compiler
Construction, 12th International Conference, CC 2003, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture Notes in
Computer Science), Gérel Hedin (Ed.), Vol. 2622. Springer, 138-152.
https://doi.org/10.1007/3-540-36579-6_11

[9] Oracle. 2017. Lesson: Annotations. (2017). https://docs.oracle.com/

javase/tutorial/java/annotations/

[10] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.

Silver: An extensible attribute grammar system. Sci. Comput. Program.
75, 1-2 (2010), 39-54. https://doi.org/10.1016/j.scic0.2009.07.004

Appendix A

Regular expressions used when scanning open-source projects
for use of spread operator:
Array:

for\s\(int\s([a-z]+\d*)\s=\s\d+;\s?\1\s?[=!<>]1{1,2}\s?
AwH)\.1length; \s?((O\\\D) | (VINHAH)) DA\ \n[\s\t]*
CANEN-NFN/N\NT*=\S AN\ (TA\N2\DNINILA\NT*\n[\s\t]*\}

Iterable:
for\s\ ([A-Z]\w+\s([a-z]+[0-971*)\s:\s.*\)\s\{\s?\n
[NENST* (L x\s=\s) 2\ TN AW L *\)\; o x\n[\t\sT*\}
Any for-loop:
for\s\(.*\)

Appendix B

The source repository for the project can be found at git@
bitbucket.org:extendj/spreadpa.git

Course paper, EDAN70, Lund University, Sweden


http://dl.acm.org/citation.cfm?id=2997378
https://doi.org/10.1007/3-540-36579-6_11
https://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/tutorial/java/annotations/
https://doi.org/10.1016/j.scico.2009.07.004
git@bitbucket.org:extendj/spreadpa.git
git@bitbucket.org:extendj/spreadpa.git

	Abstract
	1 Introduction
	2 Background
	2.1 ExtendJ overview
	2.2 Desugaring

	3 Implementation
	3.1 Parsing
	3.2 Reuse of old constructs
	3.3 Static analysis
	3.4 Bytecode generation

	4 Evaluation
	4.1 Performance
	4.2 Applicability

	5 Related work
	6 Future work
	7 Conclusion
	Acknowledgments
	References
	Appendices
	Appendix A 
	Appendix B 

