
LLVM code generation and implementation
of nested functions for the SimpliC language

Oscar Legetth
Lunds University

dat12ole@student.lth.se

Gustav Svensson
Lunds University

dat12gs1@student.lth.se

Abstract
This report will cover our work on the extension of the Sim-
pliC language(a simple C-like language) and its compiler.
We will describe SimpliC’s features and the extensions we
have made to it. The compiler has been extended with sup-
port for LLVM code generation. LLVM code lets us use the
different optimization tools that LLVM has. We will then
compare the optimized LLVM code with the assembly code
that our compiler generated before we started this project in
terms of execution time. We will also describe how we im-
plemented the extensions and the LLVM code generation,
and the different problems that came along with it.

1. Introduction
The SimpliC language is a very simple C-like language
that features variables, functions, conditional statements and
loops. We will use this language to construct a compiler
that produces both x86 assembly code and LLVM interme-
diate code. These two results will be compared in terms of
performance to evaluate and discuss the compiler optimiza-
tion. This work started with a SimpliC compiler with only
an x86 assembly back-end. We will extend the SimpliC lan-
guage with more types, such as floating point numbers and
booleans, as well as nested functions. We will also add a
LLVM back-end to our SimpliC compiler.

Since the SimpliC language is a language only used in
LTH’s compiler and project courses, not much background
research or work exists, except the similar projects to this
from earlier years of this course. It is however (as the name
suggests) a simple C-like language. The compiler is built
using JastAdd(Ekman and Hedin 2007).

LLVM(low level virtual machine) is a low level plat-
form independent compiler framework used to optimize
code (Lattner and Adve 2004). The LLVM intermediate
code representation contains both high and low-level in-
formation about the program such as type information and
Control Flow Graphs. This information is vital to the various
optimization steps LLVM goes through.

We will extend the SimpliC compiler with an LLVM
intermediate code back end and see if performance can be
improved compared to the x86 assembly back end by doing

some performance tests. The results of our performance tests
will then be evaluated.

2. SimpliC
The SimpliC language is a very simple C-like language that
features variables, types, functions, arithmetics, conditional
statements and loops. In this section we will describe these
features in more detail and describe the extensions with
nested functions and more types.

2.1 First version of SimpliC
The first version of our SimpliC language was basic and had
support for integers, arithmetics, functions, variables, condi-
tional statements and while-loops. Figure 1 shows an exam-
ple program in SimpliC that calculates a fibonacci number.

2.1.1 Functions
Functions works as they do in C with support for parameters
and obligatory return statements. Since the first version of
SimpliC only supported the type int, all functions had int

as both parameter and return types. Functions can be called
and used in arithmetic expressions. The language has two
built-in functions: print and read which could be used
for printing to the standard output, or reading from standard
input. Every program has to include a function labeled int

main where program execution will begin.

2.1.2 Variables
Variables can only be declared inside functions, i.e, there are
no global variables, and variables can only be of the type
int in the first version.

2.1.3 Arithmetic operations
The arithmetic operations possible are addition, subtraction,
multiplication, division and modulo. It is possible to use both
integer literals and variables in the arithmetic operations.
The arithmetic operations can also be chained, i.e x + 1 +

1 + 1.

2.1.4 Comparative expressions
The comparative expressions that SimpliC supports are less
than(<), greater than(>), less than or equal(≤), larger than

1 2017/2/8

or equal(≥), equal(=) and not equal(6=). They could be used
to compare integers with integers, variables with variables,
or variables with integers in the first version. SimpliC does
not support chaining of comparative expressions, i.e 1 < 2

< 3.

2.1.5 Conditional statements and loops
SimpliC supports if, if-else statements and while-loops.
They use comparative expressions to evaluate if the con-
dition is true or false.

int fib(int n) {

if (n < 2) {

return 1;

}

return fib(n-1)+fib(n-2);

}

int main() {

print(fib(40));

return 0;

}

Figure 1. Fibonacci program in SimpliC

2.2 Extensions to SimpliC
We extended the SimpliC language in this project with
nested functions and more types.

2.2.1 Nested functions
A nested functions is a function which is defined inside an-
other function. A nested function is invisible outside of its
enclosing function, but it can access everything ”above” it-
self, i.e, everything that is declared in its enclosing func-
tion(s). In Figure 2 below you can see an example of how
nested functions work. As in Figure 1 this program calcu-
lates the nth fibonacci number, but it is implemented using
a nested function unlike Figure 1. As one can see the fib

function is now declared inside the main function. It would
also be possible for the fib function to access variables that
are declared inside the main function”

int main() {

print(fib(40));

return 0;

int fib(int n) {

if (n < 2) {

return 1;

}

return fib(n-1)+fib(n-2);

}

}

Figure 2. Fibonacci program in SimpliC with nested func-
tion

2.2.2 More types
The types we added to SimpliC are float, boolean and
void. Floats are numbers which has a decimal point. Our
floating points in SimpliC works as they do in C and Java. In
SimpliC they can be declared as follows, float f = 1.5.
Like with integers, it is possible to compare floats with floats,
but it is not possible to compare integers with floats. Floats
can only be used with floats in arithmetic operations.

Booleans can be assigned true, false, or a comparative
expression. For example boolean b = 1 != 2. Booleans
can be used as the condition for while-loops and if-statements.

The void type lets us declare functions with this type,
which is useful since then it’s not obligatory for functions to
return a value.

3. LLVM
LLVM (Lattner and Adve 2004) is a compiler framework
with a source-language-independent code representation.
Figure 3 shows some of the front and back ends of LLVM.
In this project the x86 backend was used for testing and
evaluation. LLVM can represent programs of an arbitrary
language and be optimized in several ways using the LLVM
optimizer(LLV 2016). LLVM does not make use of physi-
cal registers directly, but instead allows the user to use an
infinite amount of virtual registers. All the virtual registers
in LLVM are on single static assignment form(Cytron et al.
1991). This means that a register can only be declared a
value once and can never be given a different value. If a
different value is needed, a new virtual register must be de-
clared. Static single assignment form makes it easy for the
LLVM optimizer to optimize different programs, because it
does not need to keep track of different versions of a vari-
able, since they can only be declared once. Data can also be
stored in memory. LLVM uses a load/store architecture to
transfer values between memory and registers. Loading and
storing is done in one line of code each, and must be done
before the data can be used.

2 2017/2/8

LLVM has types with predefined sizes to ensure platform-
independence, it does however allow non-portable types to
be expressed. There are only four derived types: arrays,
pointers, structures and functions. Any other type in any
other language is believed to be broken down into some
combination of these components.

The LLVM instruction set consists of 31 operations.
Some operations are overloaded and can take operands of
different types, which has reduced the number of operations.
For example, the add instruction can add integers or floating
point numbers.

LLVM comes with a textual code representation (LLVM
IR code) that can be read by humans and is what our com-
piler will produce.

Figure 3. How LLVM is used to optimize code (Lattner
2016)

int add1(int a, int b) {

return a+b;

}

define i32 @add1(i32 %a, i32 %b) {

entry:

%tmp1 = add i32 %a, %b

ret i32 %tmp1

}

Figure 4. Example of how a simple function looks like in
LLVM

Figure 4 shows a simple function that adds two integers
in SimpliC and the same function in LLVM IR code. The
%tmp1 variable is a virtual register. The generated LLVM IR
code is quite similar to the original SimpliC code. A basic
block in LLVM can begin with a label, like the entry label
in Figure 4 and must end with a terminator, like the ret

instruction, which returns a value to the calling function. The
keyword i32 is a 32 bit integer type.

4. Implementation
Our work started with extending the compiler with an LLVM
intermediate code back end with the existing features of
SimpliC. This included integers, arithmetic expressions,
comparisons between integers, loops and (non-nested) func-
tions. We then extended the language with nested functions

and more types, and implemented the extensions both in the
LLVM backend and the x86 backend.

4.1 Nested functions
We will now describe the implementation of the nested func-
tions both in the LLVM backend and x86 backend.

4.1.1 LLVM
The first version of the LLVM implementation of nested
functions was to simply put them in the function they were
defined in as a ”loop” that would be run once when we
wanted to call the nested function by jumping to the func-
tions label. If the nested function’s basic block was encoun-
tered in the enclosing function (not called by the enclosing
function, just encountered because it was defined there) it
would just be skipped. We thought this solution would be
easily readable and debuggable. However, this solution did
not fully support recursion, and we quickly ran into the prob-
lem of a nested function allocating local variable. In Figure 5
the local variable a in the function f needs to be allocated 6
times, and each new allocation needs to be a new variable
that does not interfere with the previous ones.

int main() {

f(5);

return 0;

int f(int n) {

int a = 0; // allocate a variable

if (n == 0) {

return 0;

}

f(n - 1);

return 0;

}

}

Figure 5. A nested function that allocates a local variable

Local variables were allocated using the alloca instruc-
tion in LLVM which allocates memory on the current stack
frame and returns a pointer to the allocated memory. The
current stack frame is based on which function we are in,
and f was not made a function, just a ”loop”. The 6 pointers
that must be allocated must then have unique names (since
they were defined in the same namespace). The same line of
code was handing out the same name 6 times, which was a
problem.

We solved this problem by moving all of the nested func-
tions out of their enclosing functions and used LLVM’s call
instruction to call them when needed, instead of jumping to
a label. Now that the nested functions were considered func-
tions in LLVM, the pointer names returned by the alloca

instruction would not collide, as they were all local to their
respective functions. To illustrate this a bit clearer, consider

3 2017/2/8

the C code in Figure 6 roughly equal our first LLVM imple-
mentation of nested functions. The while loop is meant to
illustrate the function f.
int main() {

int n = 5;

while (n != 0) {

int a = 0;

n--;

}

return 0;

}

Figure 6. A C program

This program would not create 6 different variables
named a, but would just redefine the same variable 6 times,
much like our first LLVM back end (except redefining vari-
ables in LLVM is not allowed). To achieve the intended be-
havior of having 6 different variables in C, the while loop
can be turned into a function and called recursively.

However, this implementation lead to another problem,
local variables in the enclosing function could now not be
referenced, since they were local to another function. This
was solved by adding the needed local variables as ex-
tra implicit parameters to inner functions when they were
called. All local variables were implemented using point-
ers, so a nested function changing the value of an enclosing
function’s local variable would work as intended. Only the
needed variables would be passed to a nested function to
avoid unnecessary amounts of extra arguments.

4.1.2 x86
As in the LLVM backend, the backend for x86 moves nested
functions out of their enclosing functions. Nested functions
were moved out of their enclosing functions. The problem
of accessing enclosing function’s variables was solved using
static links(Hedin 2011). Every time a function was called
(nested or not) a dynamic link would be put on the stack.
The dynamic link always points to the calling function’s
stack frame. Then a static link would be put on the stack
that pointed to the enclosing function’s stack frame. These
pointers can differ because a nested function can call it
self recursively, like in Figure 5. These pointers will all be
unique. In Figure 5 the static links should always point to the
stack frame of the function main, since main is the enclosing
function of f. These pointers should all be the same for all
calls to the function f. The static links allowed a nested
function to always find the stack frame of an enclosing
function and from that point find local variables belonging
to the enclosing function, without caring about where it was
called from.

Figure 7 illustrates how static links work, where the func-
tions p2 and p3 are called. They both have p1 as their en-
closing function so their static links will point to p1’s stack
frame.

Figure 7. How static links were implemented (Hedin 2011)

4.2 More types
The LLVM back end was extended with support for floating
point numbers, booleans and void functions. LLVM already
supported all of these types, so implementing them was not
a lot of work. We decided to use the 64 bit double type
for floating point numbers because of LLVM’s inability to
properly handle 32 bit floating point constants. The extended
type system was never added to the x86 back end and no
casting or conversion between types was implemented due
to the project deadline.

5. Evaluation
All testing was done on the same computer in one of the
computers on LTH running a unix environment. All test pro-
grams were run shortly after each other with no other pro-
grams running to minimize noise in the data. The LLVM IR
code was optimized with the LLVM optimizer1, compiled
into x86 assembly with the LLVM static compiler2, assem-
bled using as3 and lastly linked using gcc4. Optimizing and
linking was done with the respective -O3 flags.

1 The LLVM optimizer: http://llvm.org/docs/CommandGuide/opt.
html
2 LLVM static compiler: http://llvm.org/docs/CommandGuide/llc.
html
3 The as command: https://sourceware.org/binutils/docs/as/
4 GCC: https://gcc.gnu.org/

4 2017/2/8

int main() {

int a = 0;

print(fib(39 , 0));

return 0;

int fib(int n) {

a = a + 1;

if (n < 2) {

return 1;

}

return fib(n-1)+fib(n-2);

}

}

Figure 8. The program that was used for evaluation

We evaluated the LLVM backend and x86 backend by do-
ing performance tests on a program with a nested function,
see Figure 8. We varied n from 35 to 40 and for every n we
did 5 tests where we increased the number of variables. In
the first n was set to 35 and the only variable was int a. In
the second test for n = 35 we had another variable, int b

(See Figure 11 in Appendix). All these variables were incre-
mented in the function once per call. Every combination of
n and number of extra variables was run 5 times.

For every n we measured the execution time and then
computed the confidence interval for the measured values
that we received from the 5 tests for this specific n. We
computed the 95% confidence interval, which means that
the mean of our measured values have a 95% chance to
lie between the interval. In Figure 10 we have plotted the
confidence intervals for the measured execution times in
user time over the number of variables. For every variable
the upper and lower confidence bound(the interval) were
plotted. As expected the optimized LLVM code was faster
than the unoptimized x86 code. The confidence interval was
calculated the following way in MATLAB:

Define the measurements as a vector

x = [1.1, 2.2, 3.3]

We will now compute the confidence interval

with the 95% confidence level.

To get the number of measurements

length(x)

if n < 30, use Students t-distribution:

t = tinv([0.025 0.975], length(x)-1);

c = mean(x) + t*std(x)/sqrt(length(x))

The variable c then contains the confidence interval and

c-mean(x) is the distance from the mean value.

Figure 9. How we calculated the confidence interval in
MATLAB.

GCC has support for nested functions as well. We wrote
the same program from Figure 8 in C and then compiled with
GCC, where we set the optimization flag to -O3.

5.1 Results

Figure 10. Comparison of execution times between opti-
mized llvm, unoptimized assembler(x86) and optimized C
code.

6. Conclusion
In this project we have extended the SimpliC language
with nested functions and more types, and added a LLVM-
backend to the SimpliC compiler. Implementing an LLVM-
backend was easier than implementing the original compiler,
because it is easier to understand LLVM IR since it has some
features that higher-level languages have.

The optimized LLVM code was much faster than unopti-
mized x86 code and the execution time increased when we

5 2017/2/8

increased the number of variables. This came as no surprise,
since no optimization effort was made when generating x86.
The focus was always to just get it to run.

The C code was significantly faster than the optimized
LLVM code which we did not expect. This could be because
C is a lower level fast language and that GCC has support for
optimizing programs. It would be interesting to compile a C
program with Clang to LLVM and then compare the same
program written in SimpliC compiled to LLVM, and see if
the the result would be different from when we compiled the
C program with GCC.

Further work on this project could of course be extending
SimpliC with more features to make it a more complete
language, such as, logical bitwise operators(and, or, and
xor), structs/classes, arrays or strings.

No measurements on compile times was measured, none
of the programs took any significant time to compile. All
test programs were very small however, so a larger program
would probably be needed to achieve any interesting results.

7. Appendix

int main() {

int a = 0;

int b = 0;

print(fib(39 , 0));

return 0;

int fib(int n) {

a = a + 1;

b = b + 1;

if (n < 2) {

return 1;

}

return fib(n-1)+fib(n-2);

}

}

Figure 11. The program that was used for evaluation with
two variables.

References
R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,

and F. K. Zadeck. Efficiently computing static sin-
gle assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems,
1991. URL http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.100.6361&rep=rep1&type=pdf.

T. Ekman and G. Hedin. The jastadd system - modular extensi-
ble compiler construction. Science of Computer Programming,
2007. URL http://www.sciencedirect.com/science/

article/pii/S0167642307001591.

G. Hedin. Lecture notes, compilers course, lund university imple-
mentation. 2011. URL http://fileadmin.cs.lth.se/cs/

Education/EDAN65/2016/lectures/L10.pdf.

C. Lattner. The Architecture of Open Source Applications.
lulu.com, June 2016. URL http://www.aosabook.org/en/

llvm.html.

C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings
of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, March 2004.

LLVM: LLVM Language Reference Manual. LLVM project,
November 2016. URL http://llvm.org/docs/LangRef.

html.

6 2017/2/8

