
Java Code Cleanup using ExtendJ

Hannes Jönsson
LTH

stv10hjo@student.lu.se

Felix Olsson
LTH

dat12fol@student.lu.se

Abstract
In order to reduce code size, ensure proper functionality of overrid-
den methods as well as improve clarity of which imports are actu-
ally used, a code cleanup tool can be used. This report describes the
implementation of such a tool based on the ExtendJ Java compiler.
The tool is compared to other tools with similar functionality and
its functions are evaluated. The conclusions we draw is that the tool
does not produce correct results under all circumstances, a result of
the difficulty to ensure coverage of all possible Java functionality.

Keywords Java compiler, code cleanup, imports

1. Introduction
In this report the implementation of source code transformation tool
based on the ExtendJ Java compiler is described. ExtendJ is an ex-
tensible, modular compiler, built with the use of a declarative at-
tribute grammar system called JastAdd. Its modular design allows
developers and users to add new modules, providing the compiler
with new features according the the demand of the situation at hand.

During this project we take advantage of this extensible, modu-
lar design to add a few useful code cleanup features to the compiler.
The main features we focus on concern imports. To be specific, we
want functionality that handles unused imports and the possibil-
ity to automatically replace on-demand imports with the specific
import path. In addition to the cleanup of imports, the ability to au-
tomatically place override annotation at appropriate places is added
as a feature.

2. Motivating examples
To provide the reader with a better understanding of the goals of
the project, this section provides a few examples to better explain
the motivations behind the choices of features and implementation
thereof in the cleanup tool.

2.1 Import cleanup
When writing code it is common to work in an iterative manner,
going back and reworking earlier code, updating it and fixing bugs.
This is especially true for certain development paradigms, such as
agile development1. While doing so, it is unavoidable to change

1 K. Beck, Extreme Programming Explained, p28

[Copyright notice will appear here once ’preprint’ option is removed.]

parts of the code. Some of these parts might use an import that you
have provided which suddenly no longer is necessary. What we
want is an extension for ExtendJ that provides automatic detection
of such an unused import, and the removal thereof. As an example,
we want to turn this:

import java.util.List;
import java.util.HashSet;
import java.io.File;

public class UnusedImports {
List <Integer > list;

}

Code example 1. HashSet is an unused import.

Into this:

import java.util.List;

public class UnusedImports {
List <Integer > list;

}

Code example 2. Unused import HashSet is removed.

As can be seen from this simple example, such a feature can
increase readability by removing redundant lines from the code.
Another feature which might help to clean up the code would
be automatic replacement of on-demand imports with the proper,
complete imports according to that which is used in the code. By
avoiding on-demand imports, the code becomes clearer and lets the
user/programmer directly see which packages and which classes
are being used. By transforming code in example 3 into the code
seen in example 4, you can avoid ambiguity and possible conflicts.

import java.util .*;

public class UnusedImports {
List <Integer > list;

}

Code example 3. Only List is actually used in java.util.

import java.util.List;

public class UnusedImports {
List <Integer > list;

}

Code example 4. The on-demand import replaced with the direct
import of List.

2.2 Override annotation
At the core of object oriented programming is the possibility to
extend a super-class in order to specialize its behavior. This spe-
cialization is accomplished through overriding; the specialized re-

1 2017/1/16

implementation of methods. There is of course a dependency be-
tween a super-class and a sub-class extending it. In the case of a
change in the name of a method which is overridden in the extend-
ing sub-class, the change must also take place in that sub-class,
lest the compiler will not recognize the method as overriding an
existing method in the super-class but rather a new method. To
assure that the method in question actually overrides a method in
the super-class, or, in the case of an abstract method, actually im-
plements it, the override annotation @Override is used. With the
override annotation in place an error is produced should the method
being overridden not be found in a super-class. A tool which auto-
matically adds this annotation whenever it detects a method which
also exists in a super-class, in order to prevent such errors during
re-factoring, is thus very useful.

public class Super{

public void refactoredMethod () {...}
}

public class SubClass extends Super{

public void method (){...}
}

Code example 5. Method in the SubClass is recognized as a new
method and not as overriding refactoredMethod.

public class Super{

public void refactoredMethod () {...}
}

public class SubClass extends Super{
@Override
public void method (){...}
}

Code example 6. Override annotation causes error to be produced.

While comparable solutions exist, for example built in to most
IDE’s such as Eclipse or IntelliJ, we want an extension to the
compiler itself enabling a user access to this feature without having
to use a software suite separated from the compiler . We will
compare our solution with software providing similar functionality,
comparing the size of the software as well as correctness.

3. Implementation
The main way in which we extend the ExtendJ compiler with
new functionality is with the use of aspects. Aspects are a way
of adding attributes to the components which make up a program
2. A program can be represented as a tree of nodes called an ab-
stract syntax tree. The nodes of this tree represent different parts
of the program. With the use of aspects, we can add attributes
to these nodes. As an example, a node can represent the declara-
tion of a method, and be connected with other nodes representing
the return type, the name of the method and so forth. With as-
pects we have a way of adding further attributes to these nodes,
without actually modifying the class describing the node itself.
Instead, it is done in a completely self-contained, modular way.
Such an added attribute can take on many forms; it might for ex-
ample be a collection of the names of all the methods in a class,
stored in an attribute in the node representing the class itself. For
further information about aspects and other related concepts see
http://jastadd.org/web/documentation/concept-overview.php.

2 G. Kiczales et al. Aspect-oriented programming, p. 222

3.1 Unused imports removal
The basic idea for the implementation of the removal of unused
imports is based around a collection of all types of objects used
in the class to be cleaned, as well as a collection of all imported
types in the same class. These are stored as collection attributes in
the node CompilationUnit, which is a node of the abstract syntax
tree, representing a Java source file. Any type contained in the set
of imported types but not in the set of used types is considered
unused, and the line at which this type is imported added to the set
killableLines.

This code examples shows how the declaration of a variable
contributes the type used to the set of used types:

VarDeclStmt contributes
localVariableTypeName ()
when getTypeAccess ().nodeType ().equals(

"TypeAccess")
to CompilationUnit.usedTypes ()
for compilationUnit ();

Code example 7. The contribution of relevant data to the
collection.

A set of Integers called killableLines representing the lines where
an unused import is located in the source file is populated by
comparing the two sets of types.

3.2 On-demand import replacement
The replacement of on-demand imports with the actual path to the
type being used in the class is achieved by a method similar to that
of the removal of unused imports. The same set of used types is
traversed, and for every used type a check is made to see if it is a
part of a package imported on demand. In this example
import java.util .*;

public class UnusedImports {
List <Integer > list;

}

Code example 8. Only List is actually used in java.util.

The program checks, for the used type List, if it is present in the
package java.util which is imported on demand. as this is the case,
it replaces java.util.∗ with java.util.List as follows:
import java.util.List;

public class UnusedImports {
List <Integer > list;

}

Code example 9. The wildcard is replaced with the direct import.

This new import is added to a set importTypesOnDemand, while
the number of the line is added to a Integer set onDemLines. A
check is also made to see that the import is not already done. A
code example provides some insight in the workings of the aspect:

eq StaticImportOnDemandDecl.
isImportedAlready(String name) {
for(SingleStaticImportDecl s :

compilationUnit ().staticImports ())
{
if(s.getID().equals(name)){

return true;
}

}
return false;

}

Code example 10. Check to ensure that duplicate imports are
avoided.

2 2017/1/16

3.3 Automatic insertion of override annotation
To implement the override annotation feature, collections are once
again used. Each CompilationUnit holds two sets, one set meth-
ods which holds the MethodDecl objects representing the methods
contained in the current class, and a set overrideMethods which, if
the current class extends a super-class, contains the methods in the
super-class. The method set is traversed and the a check is made
to see if the methods override any method in the super-class, and
if so if there is a @Override present at that method. If no such an-
notation is present, the line number where it should be added is
put into a collection of integers, methodLinesWhereWeShouldAd-
dOverrideAnnotation. The following code shows this calculation
of lines where the notation should be added:

syn HashSet <Integer > CompilationUnit.
methodLines ...() {
HashSet <Integer > temp = new HashSet <

Integer >();
for(MethodDecl m : methods ()){

for(MethodDecl sm :
superClassMethods ()){
if(m.overrides(sm) && !m.

hasOverride ()){
temp.add(m.lineNumber ());

}
}

}
return temp;
}

Code example 11. Calculation of which lines need @Override.

3.4 Cleaning of the source code
Once the static analysis is completed, and all the relevant attributes
have been calculated, it is possible to use the results to conduct
the actual cleaning of the source code. The source file is read
line by line, and each line checked against data sets containing
numbers of which lines are to be modified. If a line is marked
for modification, the tool carries this out according to data stored
in relevant attributes and collections. Each line is then, whether
modified or not, written to a output file.

4. Evaluation
To evaluate the implementation, three different evaluation frame-
works are used. These frameworks are correctness, size of the im-
plementation and usability. Related works to which our tool can be
compared are presented in the section below.

4.1 Related work
In order to provide a context for the evaluation frameworks, related
tools against which a comparison can be made must be selected.
Many of the tools encountered, such as Importscrubber, dates
back to the early 00’s, often with the latest update as far back as in
2002. As a result, Importscrubber only supports Java 1.4. With
the availability of IDE’s for Java, this is not a surprise. Eclipse, for
example, has a cleanup feature containing all the features provided
by our tool, except for the changing of on-demand imports into
direct imports. The replacement of on demand imports can however
still be conducted by using the import organizer.

4.1.1 Importscrubber
Importscrubber is a stand-alone tool used for cleaning up im-
ports. Importscrubber does mostly everything our tool does, with
a few exceptions. For example, it does not handle the use of static

constants3. Neither does it insert override annotations. Additionally
it is limited to Java 1.4.34, which may make it impossible to run on
a program written with the use of a modern Java version. Thus we
never got Importscrubber to work with out test files.

4.1.2 Eclipse
Eclipse is a well known IDE with lots of different functions.
Among them are code cleanup tools. Eclipse handles the same
functionality as our tool, but it differentiates between cleanup and
organization. What this means is that while the cleanup tool re-
moves unused imports and adds override annotations, it does not
replace on-demand imports. The replacement of on-demand im-
ports is instead handled by a tool called import organizer.

Figure 1. The code cleanup tool in Eclipse.

4.2 Correctness
The first part of the evaluation assesses the correctness of the
implementation. This is done by testing the tool on a number of
test programs selected from GitHub. We compile the test programs
both with and without using our added features. The tool achieves
correctness if the resulting program clears the same tests as the
program compiled without transforming the source code. In the
case of a test program lacking tests, correctness is instead defined
by the javac compiler compiling the file without error both before
and after the running of our tool.

The first program used to evaluate to the tool is a small, simple
version of the game ”Snake” found as an open source project on
github5. Though lacking in unit tests, it does contain a variety
of types of imports and uses of statically imported classes and
constants. A few examples:

import java.util.ArrayList;
import java.awt.Color;

C.add(Color.darkGray);

3 http://importscrubber.sourceforge.net/limitations.html
4 http://importscrubber.sourceforge.net/
5 https://github.com/overben/Snake

3 2017/1/16

C.add(Color.BLUE);
C.add(Color.white);
square = new SquarePanel(C.get(color));

}...{
import java.awt.event.KeyListener;

this.addKeyListener ((KeyListener) new
KeyboardListener ());

Code example 12. Constants and type casting.

The first example shows the need for the tool to handle constants
in an imported class correctly. The second example is especially
interesting, since the use of a cast type requires particular attention
in the implementation, lest it be handled incorrectly. Neither of
these two examples show any code that will be changed, but they
are both still of interest since to fulfill the correctness requirement
the tool needs to leave code that already is clean as it is. It is
important to make sure that imports are not marked as unused when
they are used only as a cast, as in the second example. The tool
handled these, and all other cases of the first evaluation program,
correctly.

The second program used to evaluate the tool is an example
implementation of several algorithms together with corresponding
unit tests6. After running our tool on the source code files of this
program and then running the unit tests, some problems were en-
countered. The tool has a problem recognizing several used types
as such, and thus marks the import of used types as unused and
deletes them. The deletion of imports that are actually used, though
not recognized by the tool, causes the program to break. An exam-
ple of this is when an interface is instantiated as a concrete class.

import java.util.ArrayList;
import java.util.List;

public class ListerOfThings{
List <String > list = new ArrayList <

String >();
}

Code example 13. ArrayList is not recognized as a used type.

The current iteration of our tool lacks functionality which takes
care of the right hand side of such an assign statement as in the
example above, causing only List to be recognized as a used type.
This results in the incorrect removal of the ArrayList-import.

Another failure of our tool is in the case of an inheritance chain.
That is, if a class C extends class B which in turn extends class A,
our program does not recognize a method inherited to C from A as
such, and thus removes the override annotation at such a method.

4.3 Size of implementation
The the size of a program without any context is just an arbitrary
number without any particular meaning. As such, we will compare
the size of our implementation with another tool with similar fea-
tures to our own.

importscrubber contains 1641 source lines of code7, SLOC
, excluding comments, while our tool is implemented with 446
SLOC. An important thing to consider when looking at these num-
bers is the fact that importscrubber contains other auxiliary func-
tionality such as the parsing of the files, something which is han-
dled by ExtendJ in the case of our tool. Such a comparison thus
easily gives a skewed picture, as it is a comparison of a stand-alone
tool and an extension to a compiler.

6 https://github.com/spinfo/java
7 Calculated with the use of the CLOC-program found at
http://cloc.sourceforge.net

5. Future Work
The following are examples of features that, given more time, could
be implemented in our tool. A substantial amount of bugs still exist
in our tool, some of them not yet uncovered due to the limited test
coverage. Fixing the remaining bugs is a large potential area for
future work. Support for simplification of logical expression could
be added, such as: boolExp == true→ boolExp, !!boolExp→
boolExp and more complex simplifications using DeMorganś law
((!boolExp1)||boolExp2) && boolExp1
→ boolExp1 && boolExp2

In the case of the following example:

import java.util .*;
import java.awt.*;
....

List <Object > list;

Code example 14. On demand import conflict.

a conflict arises. Should List be imported from java.awt or
java.util? A feature which resolves such a conflict could be added
to the tool, though it is possible to argue that this is handled already
by the compilation error the conflict produces.

6. Discussion & Conclusion
The main problem of evaluating our tool was the incompleteness of
the implementation. With strict time constraints it was impossible
to implement functionality for all possible cases. This caused the
tool to fail when used on the second test program; instead of clean-
ing the source code, the program is broken due to the removal of
several used imports. When it does work, however, it accomplishes
the goals that where set at the beginning of the project. With the
test case of the snake game, for example, everything worked as in-
tended. Further more, all the test cases written by ourselves passed.
The problem with using test cases you write yourself is that it is
very hard to achieve a high degree of test coverage8 9. This lack of
a total test coverage which surfaced only when evaluating our tool
on a larger project is something which we would have liked to fix,
unfortunately extending the functionality of the tool to include a
larger array of Java functionality ended up outside the scope of the
project.

The automatization of code cleanup brings with it some conse-
quences which might not always be desirable. Functionality related
to import on demand replacement might be undesirable due to the
possibility that the user desire to continue to work on the modified
source code without realizing that any new import has to be made
directly. A better way to approach this feature would have been to
make it optional, for example via a argument to the tool but due
to time constraints this was never implemented. Looking at related
work, Eclipse has taken a similar approach by separating import
organizing and code cleanup.

Dr Ast was a great help when working with extensions of Ex-
tendJ. Dr.Ast is a very useful graphical representation of the ab-
stract syntax tree for a given file, enabling the user to see the re-
lationships between different components of the program and their
respective attributes. Another helpful component that simplifies the
extending is the example files that comes with the compiler, provid-
ing the basis of the extension.

Even though usability is quite subjective, it is still useful to say
something about it. A disadvantage of our tool is the current lack
of a graphic interface. The option of using a GUI instead of text
commands could increase the usability for many users. Something
which is more arguable however, is the need for such a usability in

8 P. Jalote, A Concise Introduction to Software Engineering, chapter 8
9 J. Link, Unit Testing in Java: How Tests Drive the Code, chapter 8

4 2017/1/16

a tool with a potential user base almost certainly well versed in the
terminal. Even with the lack of a GUI the tool is not hard to use, it
is a simple matter of executing the jar file and providing it with a
java-file or several files as arguments.

References
Pankaj Jalote. A Concise Introduction to Software Engineering. Springer-

Verlag London Limited, 2008.
Kent Beck. Extreme Programming Explained. Addison-Wesley Boston,

Massachusetts, 2005.
Kiczales Gregor, Lamping, et al. Aspect-oriented programming in

ECOOP’97 — Object-Oriented Programming: 11th European Con-
ference. pringer Berlin Heidelberg, 1997.

Johannes Link. Unit Testing in Java: How Tests Drive the Code. Morgan
Kaufmann, Burlington Massachusetts, 2003.

Torbjörn Ekman & Görel Hedin. The JastAdd Extensible Java Compiler.
OOPSLA 2007: 1-18, Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Objects-Oriented Programming Systems, Languages and
Applications, Montreal Canada, 2007.

5 2017/1/16

