Extending Java with new operators

EDANT70 - Project in Computer Science

Hans Bjerndell

Lund University
dat12hbj@student.lu.se

Abstract

We have explored the possibilities of extending the syntax of the
Java programming language with a new operator, known as the
spread operator, using the extensible Java compiler ExtendJ[1]. The
spread operator is a binary operator that accesses a field or calls a
method on each object in a collection, a feature we believe to be
highly useful. Our extension to ExtendJ consists of new parsing
rules, static analysis and a new node type in the abstract syntax tree
(AST). Bytecode generation is left as future work, the extension
we have developed serves as a basis for further development. In
this report we describe the process of developing the extension and
provide examples of the spread operator in use. Finally we evaluate
the extended compiler, measuring compile-time and comparing the
results with the ExtendJ base compiler.

Keywords compiler, extension

1. Introduction

In this project we have implemented the spread operator, develop-
ing an extension module to ExtendJ[1], an extensible Java com-
piler. In the background section we overview the different concepts
Extend] works upon, as well as JastAdd which ExtendJ is imple-
mented using, along with a description of the spread operator as it
is implemented in the Groovy programming language|[2].

The motivating examples section exhibits use cases of this op-
erator as well as a desired side effect: reducing source lines of code
(SLOC), improving readability and elegance of the code. In the
implementation section we give an overview of the different parts
of the extension, followed by a more detailed description of these
parts, in the form of code excerpts. The result is a compiler sup-
porting the spread operator through new parsing rules, extended
abstract grammar and static analysis. Bytecode generation was not
implemented due to time constraints.

General purpose programming languages that are widely used to-
day, such as Java, are often extended and abstracted in order to
implement domain-specific concepts. There are two very differ-
ent ways to add functionality to a programming language; using
libraries that are compiled together with the source code, or by ex-
tending the compiler with new syntax and behavior.

Examples of libraries implementing domain-specific concepts
in the Java language are Pattern, from the Java standard library, im-
plementing regular expressions to recognize patterns in strings or
the Java Database Connectivity library which implements database
handling. While offering helpful abstractions, a library does not
change the language at its core, if a new keyword or operator is
needed, the compiler has to be modified.
Syntax extension differs radically from using libraries to extend
functionality. The compiler, which defines the language, needs to
accept new keywords and/or new operators and new parser rules for

Extending Java with new operators

Linus Lexfors

Lund University
baslllle@student.lu.se

the added syntax must be defined. Semantic analysis also has to be
implemented so that the extensions provide the expected behavior
and meaning. The spread operator serves as a good candidate since
extending the compiler to support it involves all the different steps
of compiling mentioned above.

Many different extensible compiler solutions exists, using different
approaches to let the programmer extend functionality and modify
syntax in an existing language, and we have briefly looked at a
few of them. Sugar] is an extensible language built on top of Java
that uses a library-centered approach to modify syntax[6]. Maya[4]
uses generic functions as grammar productions, with multimethods
to implement semantic actions, transforming the abstract syntax
tree(AST). Polyglot[9] is similar to Extend] in that it uses the AST
as the only structure being operated on, however it does not employ
aspect oriented programming to define new AST nodes attributes
and behavior, using a delegation mechanism instead.

2. Background

Our main inspiration for the spread operator comes from the
Groovy programming language, which uses the Java platform[2].
In Groovy, the spread operator works on collections of objects,
accessing a field or calling a method on each of the objects and
returning the result in a new collection[3]. We find this functional-
ity useful as well as intuitive: it works as syntactic sugar for what
would require looping through the objects and invoking an action
on each of them explicitly in Java. Groovy implements other in-
teresting uses of the spread operator, such as using it with a list to
inline the contents into another list, which are beyond the scope of
this project.

2.1 JastAdd

JastAdd[7] is a meta-compilation system based on Reference At-
tribute Grammars. JastAdd uses an internal structure of an abstract
syntax tree (AST), which is a tree representation of the abstract
syntactic structure of the source code and as such each node in the
tree represent a construct present in the code. To add attributes to
AST nodes, JastAdd makes use of aspects which declare attributes
and equations or ordinary fields and methods.

An excerpt of an aspect used in our implementation is shown
below:

aspect Type {
syn TypeDecl SpreadExpr.collectionO0f() {

return getCollection().type().iterableElementType();

}

eq SpreadExpr.getAccess().lookupVariable(String name) {

return collectionOf () .memberFields (name);
}
}

2016/12/16

Above we see an example of a synthesized attribute, which means
that it is defined by an equation in the node itself, in this case the
node SpreadExpr. We also see an example of an equation which
defines the parameterized attribute lookupVariable(String name)
located in the child node Access in relation to SpreadExpr.

2.2 ExtendJ

ExtendJ! (previously JastAddJ[5]) is an extensible compiler im-
plemented with the aforementioned meta-compilation system, Jas-
tAdd, and allows developers to extend Java with new functionality
in a modular way. It has a foundation which consists of the ab-
stract grammar, parsing, type analysis etc. of ordinary Java and as
of writing this report it has support for up to Java 8, and is still
being developed and maintained at Lund University. The developer
can create modules consisting of additions to the grammar, parsing,
scanning, and aspects to define the added functionality. When gen-
erating the compiler, the new module(s) are woven into the code
foundation and the result is essentially a new language.

3. Motivating examples

The spread operator we have implemented is used for accessing
fields and calling methods on collections of objects. This leads to
concise statements using fewer SLOC compared to the equivalent
program in Java, improving readability of the code as seen in the
following examples.

With the spread operator we avoid the for-loop when we would like
to call the method D on all objects of type A in the collection B:

B*.D(Q);

The equivalent in ordinary Java (which does not support the spread
operator):

for (A a: B) {
a.DO;
}

Aggregating fields in a collection of objects is accomplished in a
similar fashion:

A = Bx.D;

The resulting collection A is of the same collection type as B but
with the template type of the field D. As we can see, we also avoid
explicit construction of the collection before the assignment. This
is generally necessary in ordinary Java, as shown in the equivalent
example below:

A a = new AQ;
for (Cc : B) {

a.add(c.D);
}

'http://www.extendj.org

Extending Java with new operators

Lets look at a more involved example:

public class Person {
private int age = 5;
public int getAge() {
return age;
}
}

ArrayList<Person> persons = new ArrayList<>();
for (int i=0; i<10; i++) {
persons.add(new Person());

}

for (Integer i : persons*.getAge()) {
System.out.println(i);
}

The Person class has a private field and a getter method. In the
final loop, the spread operator applies the method getAge to every
element (Person object) in the list persons. The result of this is a list
containing the corresponding return values (all of value 5), which
is then iterated over and printed.

4. Implementation

Developing an extension to the ExtendJ compiler can be comprised
of several different additions to all the steps involved in compil-
ing, complementing the base scanner, parser and abstract grammar
of ExtendJ. Implementing the spread operator involved making ex-
tensions to all of these parts. We start with an overview of the parts
involved that needs modification and then venture into further detail
on each of them.

Starting with the scanning step, a new token defining the spread
operator (*.) was introduced. The new token was then introduced
into the grammar of the language, by introducing new productions
involving the operator. A new AST node was added to the abstract
grammar, modeling the expression containing the spread operator,
and the grammar productions defined to create an instance of this
node.

4.1 Parsing and scanning

JFlex is used to generate Extend)’s scanner. Below we show the
addition needed to accept the token for the spread operator:

<YYINITIAL> {
Tk M { return sym(Terminals.SPREAD); }
}

The spread operator can now be referred to in the grammar as
shown in the next example. Beaver is used to generate ExtendJ’s
parser. Below is an excerpt of how we extend the grammar with
new productions:

%left SPREAD;
Access field_access =

primary.c SPREAD simple_name.f

| simple_name.c SPREAD simple_name.f

{: return new SpreadExpr(c, f); :}

| simple_name.c SPREAD method_invocation.f

{: return new SpreadExpr(c, f); :}
Here the spread expression is defined to be left associative and is
introduced into the grammar. Note that the field_access nontermi-
nal already exists in the original Extend] grammar, and is simply
extended with more productions. The semantic action builds a new
AST-node type to represent the spread operator.

2016/12/16

The SpreadExpr node is defined by the following abstract grammar
declaration:
SpreadExpr : Expr ::= Collection:Expr Access;
SpreadExpr is a defined to be a subclass of Expr so that it can be
used as a normal expression. The child Collection refers to the Java
collection that the spread operator is used on. The Access node
refers to a field or method in the object contained in Collection.
These attributes are used for variable lookup, for example finding a
declaration for the Collection operand, and for type analysis.

4.2 Analysis and error collection

‘We added attributes, equations and error collection contributions to
define when the spread operator is used incorrectly.

Below is an example of a contribution to a collection attribute. The
attributes uses methods and other attributes from the ExtendJ APIL.
The target variable that the SpreadExpr is assigned to has to be
iterable (such as ArrayList or HashSet) when returning a collection.
The iterable requirement is implemented with a boolean attribute in
the SpreadExpr node:

aspect Type {
syn boolean SpreadExpr.targetIsIterable() {
return targetType() .isIterable();
}
}

After the targetlsiterable attribute is defined, we use it to define a
compilation error, by making SpreadExpr contribute an error to a
error collection attribute in the CompilationUnit node:

SpreadExpr contributes error("Illegal use of spread
operator, target type is non-iterable:
" + targetType() .typeName())

when !targetIsIterable()

to CompilationUnit.problems();

5. Evaluation

Since we have only implemented static analysis for the spread op-
erator we only evaluate static analysis performance.

First by performing static analysis on a number of Java programs
of varying size. Note that these programs are ordinary Java pro-
grams not using the spread operator. We measured the compilation
time of the programs, using both the ExtendJ base compiler and our
extended compiler and compared the measurements. Our expecta-
tion was that a project not using the added operator would not have
an increased compilation time when using our generated compiler
compared to an unmodified ExtendJ-compiler.

Secondly we performed static analysis on smaller pairs of
equivalent programs, where only one of the programs uses the
spread operator, and compared the compile-time.

We also aimed to evaluate the validity of our extension by test-
ing multiple scenarios in which the use of the operator is expected
to work as if only native Java code was used. For example to create
the correct resulting collection when a spread operator application
is passed as a parameter.

5.1 Measurement methodology

For each project/program we performed a compilation 30 times,
measured the total execution time and used the results to calculate
the mean. We then calculated a 95% confidence interval using a
normal distribution for each measurement, which are presented in
the figures as a vertical interval at the top of each bar.

Extending Java with new operators

5.2 Extend] only

We began by, for each project, running the compilation once to
warm up the JVM, in order to obtain a fair measurement for the
following compilations. We used two projects consisting of 1081
and 4792 lines of code respectively and the resulting compilation
times are shown in figure 1.

l #H1,263.7
| H:1,260.3

4792

1 ExtendJ only
1 Our extension

lines of code

l 1873.8
| }866.2

1081

| | ! | | ! |
0 200 400 600 800 1,000 1,200 1,400

milliseconds

Figure 1. Total execution time.

5.3 Extend]J with our extension

As with the previous compilations, we began by warming up the
JVM before measuring the compilation time. We used the same
projects as before and the resulting mean compilation times and
confidence intervals are also shown in figure 1.

Compared to the results in figure 1, there was a slight increase in
compilation time when we used the compiler with our extension,
although it’s not statistically significant and is likely not noticeable
from a user standpoint.

54 Java

Next, we evaluated the compilation times for two simple programs
in native Java, using our compiler extension. For this part, we
used smaller projects in which we could easily find statements
and/or expressions for which we would be able to use the spread
operator instead, in order to achieve a fair comparison between the
measurements. The resulting measurements are shown in figure 2.

2016/12/16

T T T
71 | l 1502.8 |
| #1530
Q
2
< 1 Without spread
b 1 With spread
£
39 [H}i483.7
| §506.2
| | | | |

! !
0 100 200 300 400 500 600
milliseconds

Figure 2. Total execution time.

5.5 Java using the spread operator

Finally, we evaluated the programs from the previous section, al-
though modified to use the spread operator where applicable. The
projects are equivalent to the previous ones in all but the syntax.
The resulting compilation times are shown in figure 2.

We can see a small decrease in compilation time when using our
spread operator. It is likely due to fewer SLOC and that the re-
sulting AST:s has fewer nodes, about 130 fewer in both examples,
compared to that of the programs using native Java, which is an
important metric to keep in mind as the compiler only performs a
static analysis and is not generating bytecode.

5.6 Test cases

During development we created a suite of 25 test cases, to test the
correctness of the operator. The tests are divided into two parts,
covering field access and method access application of the spread
operator. The operator is used in a variety of expressions covering
all use cases we could think of. Below we demonstrate some of the
more complicated test cases we have considered. The typical error
is a mismatch between the field or method type accessed by the
operator, and the field/method in the objects in Collection.
Ex 1, using the spread operator inside methods.

public ArrayList<Integer> getAges
(ArrayList<Person> persons) {
return persons*.age;
}

// Below: correct usage, type match.
ArrayList<Integer> ages = getAges(lista);
// Below: compiler error: type mismatch.
ArrayList<Double> ages = getAges(lista);

Ex 2, nested spread application. Although not fully supported, our
implementation handles cases of nested spread expressions where
no assignment is being made. In the following example, the Person
objects contained in the persons collection has a Car object as a
private field. The Car objects has a void-method printInfo, which
prints the year and the model of the car:

persons*.getCar) *.printInfo();

As the spread operator is left associative, the leftmost spread oper-
ator returns a collection of Car, which is then passed to the second

Extending Java with new operators

spread operator. In the next section we display the abstract syntax
tree(AST) for this nested spread case.

5.7 Dr AST

Dr ASTI8] is a attribute debugger tool developed at Lund Univer-
sity. Dr AST allows developers to inspect the AST created by the
compiler for a specific program. We have used Dr AST extensively
in development to debug our compiler. All the test cases have been
loaded into Dr AST, where one can easily compute the attributes
of nodes in the AST and get a clear picture of the structure of the
program.

Exprstmt

Figure 3. AST for Ex 2 under test cases

6. Conclusion

We developed a compiler extension on top of ExtendJ, implement-
ing the spread operator. We added new parser rules and grammar
productions and introduced a new AST-node to the abstract gram-
mar. Static analysis was implemented using the reference attribute
grammar system of JastAdd. We have evaluated the compiler-
extension through compile-time measurements and test cases. The
result is a new compiler capable of building a correct abstract syn-
tax tree for a program using the spread operator, along with suitable
error messages when the operator is used incorrectly. Our solution
is limited to static analysis as bytecode generation proved too time
consuming within the scope of the project. We however believe this
project can serve as a basis for further development.

During the project we learned a lot about extensible compilers
and the process of developing an extension of our own. This in-
cluded further insight into the JastAdd system of synthesized and
inherited attributes, as well as working with a large, perhaps some-
what outdated, API documentation. We underestimated the amount
of work required and the difficulty involved in developing the ex-
tension, this perhaps was the most important lesson learned. Our
background in the field comes solely from the Compilers course
(EDANG65) and we have a new appreciation of the difficulty in static
analysis when introducing more complicated structures such as col-
lections and generics to a programming language.

2016/12/16

6.1 Working with Extend]J

It has been an interesting experience working with ExtendJ, al-
though not entirely without difficulty. The main problem we en-
countered was that the API documentation was incorrect or out-
dated for certain classes, for instance there could be one or more
classes called something similar to each other in the API but some-
thing slightly different in the working repository. This caused un-
necessarily long periods of trying find and then match the actual
classes to the API in order to be certain of correct usage. We also
encountered constructor and method signatures that did not cor-
respond to the actual classes, causing originally quite simple ad-
ditions to take significantly more time to implement due to both
build errors caused by (unknowingly) incorrect usage and the en-
suing time it took to debug. It may sound like trivial problems but
taken our unfamiliarity with ExtendJ and its API into account it
amounts to a significant threshold to overcome, and it is likely that
new developers may encounter the same.

6.2 Future work

We aimed to create an extension as complete as possible but un-
fortunately some aspects of the work proved to be more time con-
suming and complex than we first anticipated. The main aspect of
the extension that we did not manage to implement was bytecode
generation, which would have made it quite a bit more interesting
in terms of usability and for our own part; evaluation.

Our implementation currently does not fully support nested appli-
cation of the operator, such as:

ArrayList<String> strings = list*.getAges()*.toString();

Our extension to the grammar does not allow expressions of this
kind. The parser rules could be modified to support this while re-
taining current properties.

The compiler currently does not generate an error when a private
field is being accessed through the spread operator. Correctly im-
plementing visibility constraints would be crucial to a complete
implementation.

Bytecode generation is the most important feature not developed in
this project. This would require a general approach capable of gen-
erating the correct bytecode in the multiple different expressions
where the spread operator can be used.

Acknowledgments

We have benefited greatly from our meetings with supervisor Jesper
Oqvist, the maintainer of Extend]. He has given us advice on
everything from implementation to writing this report.

Extending Java with new operators

References

[1] Extendj homepage. http://extendj.org/. [Online, accessed 30-
november-2016].

[2] Groovy programming language, . URL http://groovy-lang.org/.

[3] Spread operator in groovy, . URL http://docs.groovy-lang.
org/latest/html/documentation/index.html#_spread_
operator.

[4] J. Baker and W. C. Hsieh. Maya: Multiple-dispatch syntax extension in
java. SIGPLAN Not., 37(5):270-281, May 2002. ISSN 0362-1340. .
URL http://doi.acm.org/10.1145/543552.512562.

[5] T. Ekman and G. Hedin. The jastadd extensible java compiler. In R. P.
Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S. Jr., editors, Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2007,
October 21-25, 2007, Montreal, Quebec, Canada, pages 1-18. ACM,
2007. ISBN 978-1-59593-786-5. . URL http://doi.acm.org/10.
1145/1297027.1297029.

[6] S. Erdweg, T. Rendel, C. Kistner, and K. Ostermann. Sugarj: Library-
based syntactic language extensibility. SIGPLAN Not., 46(10):391-406,
Oct. 2011. ISSN 0362-1340. URL http://doi.acm.org/10.
1145/2076021.2048099.

[7]1 G. Hedin and E. Magnusson. Jastadd - a java-based system for im-
plementing front ends. Electr. Notes Theor. Comput. Sci., 44(2):59—
78,2001. . URL http://dx.doi.org/10.1016/S1571-0661(04)
80920-4.

[8] J. Lindholm, J. Thorsberg, and G. Hedin. Drast: an inspection tool
for attributed syntax trees (tool demo). In T. van der Storm, E. Bal-
land, and D. Varrd, editors, Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering, Amster-
dam, The Netherlands, October 31 - November 1, 2016, pages 176—180.
ACM, 2016. ISBN 978-1-4503-4447-0. . URL http://dl.acm.org/
citation.cfm?7id=2997378.

[9] A. C. M. Nathaniel Nystrom, Michael R. Clarkson. Polyglot: An ex-
tensible compiler framework for java. Proceedings of the 12th Inter-
national Conference on Compiler Construction, pages 138-152, 2003.
URL https://www.cs.cornell.edu/andru/papers/polyglot.
pdf.

2016/12/16

