
LLVM as optimizer and compiler backend
Project in Computer Science – EDAN70

Valdemar Roxling
D11, Lund Institure of Technology, Sweden

dat11vro@student.lu.se

January 19, 2016

Abstract
New programming languages often bring new ideas and tools to the
programmer to make certain tasks easier to implement and speed
up development. The one thing that many new languages fail to
improve is performance, but with some relatively simple backend
changes the compiler can use well known and good algorithms to
achieve a lot in terms of code optimizations and speed-up.

In this article I have evaluated a backend exchange of an existing
small language called SimpliC to generate to the intermediate lan-
guage LLVM-IR 1. This makes SimpliC work on any platform and
operating system supporting LLVM, and I can make use of already
existing code optimizers. In addition to performance measurements
I have also extended my language with an additional high level con-
struct, nested functions, not natively supported by LLVM.

1. Introduction
The SimpliC programming language is a small subset of the pro-
gramming language C, created mostly as a source of learning. The
existing compiler is generating Intelx86 code for Linux without
any considerable optimizations and for large programs it is very
slow, mostly because it has no register allocation, and pushes all
data to the stack.

The LLVM-IR language[1] is an intermediate language, built in
a way that makes it easy to optimize in many different ways and
at different times. It currently supports compile-time, link-time,
run-time and idle-time optimizations [2]. LLVM is already used
as backend in a several different compilers of which Clang for C
and C++ is the most noticeable, and it can also be found in compil-
ers for both old languages like Fortran, Ada & Lisp, and for
modern languages like Python, Scala & C#. LLVM is also a
cross-platform language and assemblers can be found on almost
any common architecture and operating system. So instead of hav-
ing a different compiler backend for every supported platform, you
just need to create and maintain one.

All these features makes it a very suitable backend for almost
any new language and compiler that wants to increase the execu-
tion speed of the compiled programs, but another just as important
aspect is how easy high level language constructs can be imple-
mented in this relatively low level language and still maintain speed
and flexibility.

Generating LLVM-IR can be quite challenging, as the LLVM
compiler is very strict on how the code should look like, everything
is highly annotated and temporal variables can only be assigned
once, everything to allow for better optimizations. To build high
level constructs it is mostly a challenge of transforming them in

1 Low Level Virtual Machine intermediate representation

to low level constructs supported by LLVM, where the biggest
challenge is to find the best transformation.

In this article I will first describe some of the tools I have
used, then I will discuss some of the challenges when exchanging
a compiler backend and how to implement high level constructs
in LLVM. I will also evaluate the results by comparing with the
previous compiler and a well known existing compiler. At last I
will discuss some related and future work.

2. Tools
In order to fully understand the backend exchange with related
problem and solution discussions some technical information about
SimpliC, the existing compiler and LLVM is required.

2.1 SimpliC
The syntax of SimpliC is very similar to the one of C, and a pro-
gram consists of one or more functions, of which one is called
main. Each function has a return type, a name, and zero or more
arguments. The function body consists of one or more statements;
variable declarations, if-else, while, assignment, function calls,
nested functions and return. Variables can be of integer and boolean
type, functions can also have the void type. Math operations on
variable consists of addition, subtraction, multiplication, division,
modulus, equality, non-equality, lesser or greater. Variables and
functions do not share the same namespace, and nested functions
and variables can be shadowed. Recursion is also supported. The
”standard library” consists of two functions, to read and write data
to or from the current standard input and output.

2.2 Compiler
The SimpliC compiler is using Beaver and Jflex for scanning
and parsing, and JastAdd[3] to create the abstract syntax tree, to
perform type analysis, name analysis, error checks and to generate
backend code.

2.3 LLVM
The LLVM framework, consisting of the LLVM-IR specification
together with associated compilers and libraries, was initially re-
leased in 2003, and is still under heavy development, with the most
recent stable release in September 2015. It was originally designed
to be easy and fast to optimize, in many different stages of compila-
tion. The standard package for linux comes with a static compiler,
llc that compiles and optimized the llvm file format .ll to ob-
ject code, .o. It also comes with an JIT2-compiler/interpreter that
optimizes the code during runtime.

2 Just in time

1 2016/1/19



The basics of the LLVM-IR language consists of global/local
variables of many different types (integer or floats of arbitrary
bit length, and pointers to those), functions and function calls,
all the basic mathematics operations and branches. Most variables
in the language are of temporary kind, and can only be assigned
once, but read many times. When variables are used their type
must be explicitly told, and type casts are available. Everything in
LLVM-IR can be annotated with, to tell the compiler about which
optimizations it is or isn’t allowed to do.

LLVM-IR can be seen as a language somewhere between C and
an assembly instruction set.

3. Adapting to LLVM
The original compiler for SimpliC, created in 2014, produced a
naive stack-based approach for the Linux Intelx86 instruction set,
without any performance considerations. Exchanging this simple
approach with LLVM, will produce something that does not only
work, but is fast, flexible, multi platform, and uses some of the
latest code optimization algorithms.

3.1 Backend exchange
To just change the backend of a compiler may sound easy, but
requires a deep understanding of the language you are going to use.
LLVM has a lot of documentation, but not much of practical use,
and I found out that using Clang to create examples for my self
was a great source of information. The LLVM-IR compiler is very
strict and will fail to compile with vague error messages at best if
you get any of the syntax slightly wrong. And since the language
is very expressive it is very likely to get it wrong at one point or
another.
A simple C function call:

int num = 5;
printf("%d\n",num)

Can look like this in LLVM:

@fmt = internal constant [4 x i8] c"%d\0A\00"
%num = alloca i32
store i32 5, i32 *%num

call i32 (i8*, ...)* @printf(i8* getelementptr
inbounds ([4 x i8]* @fmt ,
i32 0, i32 0), i32 %num)

Another thing worth noticing is the fact that LLVM uses tem-
poral variables for everything, and these variables can only be as-
signed once, and this was a common source of problems for me.

3.2 Nested functions
Nested functions, or local functions, are functions inside of other
functions that are only visible to the local scope, and can access
objects and variables in any of its enclosing functions. A simple ex-
ample illustrating nested functions can be seen in figure 1. LLVM-IR
does not support nested functions natively, so nested functions,
along with any other high level construct you wish to implement
has to be transformed in to something supported by LLVM-IR with-
out affecting its functionality[4].

Quite naturally a nested function can be transformed into a nor-
mal function, but with a unique name only known to its enclosing
functions. After that the only problem that remains is how the func-
tion should be able access objects from all of its enclosing func-
tions. To access those objects you can choose one of the following:

• Send pointers to accessed objects as additional implicit function
parameters.

• Encapsulate pointers in a C-like struct and send struct as an
additional implicit parameter.

• Pass a pointer to frame of the caller as a implicit parameter, just
like a static link in a runtime system.

I choose to go with the first approach as it seemed easier to me,
but any of the others would work just as well, and might even be
seen as a more elegant solution, but may require more work.

What is left now is to determine which variables that needs to
be passed as arguments, and how many levels of nested functions
the variables has to be passed through. This is done by first looking
at the enclosing function. If it’s declaration is not found there, then
a pointer to it should be passed as an argument and you go up one
scope to the next enclosing function and repeat, until you reach the
”global scope”.
An example of two SimpliC nested functions may look like this:

int main (){
int a;
int c = 7;
void f1(){

int b = 2;
void f2(int num){

a = 2 * b + num;
}
f2(3);

}
f1();
print(a+c);

}

Figure 1. A simple SimpliC nested functions example.

And when transformed it would look like this (transformed to C
instead of LLVM-IR for clarity and higher readability) :

void main_f1_f2(int num , int *hidd_a , int *hidd_b ){
*hidd_a = *hidd_b * 2 + num;

}

void main_f1(int *hidd_a ){
int b = 2;
main_f1_f2 (3, hidd_a , &b);

}

int main (){
int a;
int c = 7;
main_f1 (&a);
printf("%d\n",a+c);
return 0;

}

Note how the function names have changed to something only
known to the main function, and that a pointer to the variable a
is passed to first f1 and then f2 even when it is not accessed by the
first function. And a pointer to the variable b is only passed to f2
since it’s declaration was found in f1. And the printed result of this
program is 14 (2 ∗ 2 + 3 + 7).

4. Evaluation
In order to evaluate my implementation I have measured the per-
formance improvements of exchanging the compiler backend.

4.1 SimliC, LLVM & Intelx86 performance
The performance boost in terms of program execution time of using
LLVM-IR as a backend opposed naive Intelx86 can be measured
in many different ways. I choose to execute anO(n2) algorithm for

2 2016/1/19



calculating the Fibonacci sequence recursively, from the definition
seen below.

fib(n) =


0 if n = 0
1 if n = 1
fib(n− 1) + fib(n− 2) if n >1

This test case is created without nested functions and the eval-
uation is between the naive Intelx86 compiler backend and the
LLVM-IR compiler backend. The complete test code can be found
in appendix A.1, and the result can be seen in figure 2. The speed-
up factor seems to be constant around 140% faster for this particu-
lar test program, with LLVM-IR as backend. This result was rather
expected since the first approach of generating Intelx86 naively
used no optimizations, and LLVM uses almost all of the common
ones, including register allocation and fast calls. Another perk of
using LLVM is that the generated assembly file is of around half the
size of the unoptimized one generated with the previous backend.

Figure 2. Performance plot of recursive Fibonacci calculations.
Note the log10 Y-scale. Each sample is the mean of 5 measure-
ments, and the maximal 95% confidence interval is the value
±0.280s, for n = 50. No confidence intervals are overlapping
hence the measurements are statistically significant.

4.2 Nested functions, SimpliC & GNU C performance
In GNU C, a non Iso C extension, nested functions are allowed
with basically the same syntax as SimpliC. So comparing my solu-
tion of nested function with another, professional implementation,
is very interesting. The test I performed is basically the same recur-
sive Fibonacci series calculations, with the big difference that the
recursive function is now nested, and in each call a variable in the
enclosing function is incremented, calculating how many recursive
calls that has been made. The result can be seen in figure 3, and sur-
prisingly, yet hard to see with the logarithmic scale, my LLVM-IR
implementation is around 12% faster than the GNU C GCC imple-
mentation. The complete test code for both SimpliC & GNU C can
be found in appendix A.2 & A.3 respectively.

4.3 Known limitations
Almost no programs are entirely correct and without bugs or limi-
tations, and neither is this compiler. The compiler itself terminates
with a STACK OVERFLOW and fails the compilation of programs ex-
ceeding around 1500 lines of code (LOC) due to ineffective analy-
sis of the abstract syntax tree. But due to limitations in the language
no ”real” programs are likely to reach even close to the size and
complexity that causes the compiler to crash.

Another limitation is that the stack is only collapsed after the
return of a function call, due to the nature of LLVM-IR containing no
scopes inside a function. In the following simple example the stack
does not collapse after each iteration of the while-statement, and

Figure 3. Performance plot of recursive Fibonacci calculations
with nested functions. Note the log10 Y-scale. Each sample is the
mean of 5 measurements, and the maximal 95% confidence interval
is the value ±0.181s, for n = 50. No confidence intervals are
overlapping hence the measurements are statistically significant.

the variable declaration int j = i will quickly fill up the stack,
causing a SEGMENTATION FAULT exception.

int main (){
int i = 0;
int MAX_STACK_SIZE = ...
int calc = 0;
while (i < MAX_STACK_SIZE ){

i = i + 1;
int j = i;
calc = calc + j;

}
print(sum);

}

Each iteration of the loop will allocate some memory for the vari-
able j, and this memory has to be deallocated, either by collapsing
the stack by hand, or allocate the variable once in the function scope
instead. This has not been implemented due to time limitations in
the scope of this project.

5. Related work
Almost every programming language out there has a compiler using
LLVM as backend, ranging all the way from Erlang[5] to Scala.
This is very interesting, especially for new small languages, as they
can link and use the libraries of the larger languages, providing they
use the same LLVM data layout (memory model), allowing these
languages to more quickly become usable, and developers does not
have to ”re-invent the wheel”. The most commonly known com-
piler is, as previously mentioned, Clang, and I use this compiler, to
implement SimpliC’s predefined functions read() & print()
using ISO C’s printf() & scanf().

Another very interesting compiler is GHC3 for Haskell be-
cause they encounter a similar problem of nested function as I have
solved, since it is a functional language. GHC uses two-stage back-
end, with a the first stage using a language called Cmm[6], and the
second stage using C, but can switch to LLVM if requested. This
option was added as the Haskell language is very complex and
had high level constructs not easily represented with C, resulting
in slow program execution. One attempt to solve this was to in-
stead use GNU C as intermediate language, and use its non ISO C
extensions to solve the problem. This was later cancelled due to
not gaining the desired performance increase and GNU C not being
compatible with every desired platform, so LLVM was approached.

3 The Glasgow Haskell Compiler

3 2016/1/19



LLVM solved the initial performance problem, but not without its
own set of drawbacks, hence LLVM is still just optional [7].

6. Conclusions
Exchanging the backend to LLVM turns out to be well invested time,
providing my language with the features of using some of the best
optimization algorithms there are, resulting in very fast program ex-
ecutions, both with a static compiler, or a JIT. It also provides porta-
bility of the language to almost any platform and operating system,
as well as library compatibility with all the other language compil-
ers out there with LLVM as backend. But generating LLVM-IR is
not the easiest of tasks, and there are many, well camouflaged pit-
falls causing undesired results, and generating limitations instead
of removing them.

It also seems like most high level language constructs can quite
”easily” be transformed into LLVM-IR code since my example of
nested functions turned out to be relatively simple rewrite, and
many other, very complex, languages and compilers uses LLVM as
main or optional backend, like Clang for C and GHC for Haskell.

6.1 Future work
There are many suitable extensions to this project. The most obvi-
ous are to correct the limitations mentioned in section 4.3. Further-
more extending the language with more types, allowing arrays and
structures, implementing more high-level constructs like pointers,
classes and λ-functions, just to mention a few will greatly increase
the usability of the language.

A. Performance tests
A.1 Naive Fibonacci series calculation in SimpliC.

int fib(int num){
if(num < 2){

return num;
}
return fib(num -1)+ fib(num -2);

}

int main (){
print(fib(read ()));

}

A.2 Naive Fibonacci series calculation as a nested function
with a call counter in SimpliC.

int main (){
int numcalls = 0;
int fib(int num){

numcalls = numcalls + 1;
if(num < 2){

return num;
}
return fib(num -1)+ fib(num -2);

}
print(fib(read ()));
print(numcalls );

}

A.3 Naive Fibonacci series calculation as a nested function
with a call counter in GNU C.

#include "stdio.h"

int main (){
int numcalls = 0;
int fib(int num){

numcalls ++;
if(num < 2){

return num;
}
return fib(num -1)+ fib(num -2);

}
int n;
scanf("%d" ,&n);
printf("%d \n%d \n", fib(n), numcalls );

}

Acknowledgments
I would like to thank:

• Anton Klarén for assisting me in developing the ”original”
SimpliC languange with compiler in the fall of 2014.

References
[1] LLVM-IR language reference.,

2015-12-05
http://llvm.org/docs/LangRef.html.

[2] C. Lattner and V. S. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in 2nd IEEE
/ ACM International Symposium on Code Generation and
Optimization (CGO 2004), 20-24 March 2004, San Jose, CA,
USA. IEEE Computer Society, 2004, pp. 75–88. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2004.1281665

[3] T. Ekman and G. Hedin, “The jastadd system - modu-
lar extensible compiler construction,” Sci. Comput. Program.,
vol. 69, no. 1-3, pp. 14–26, 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2007.02.003

[4] Common high level language constructs transformed to LLVM-IR.,
2015-12-06
http://llvm.lyngvig.org/Articles/Mapping-High-Level-Constructs-to-
LLVM-IR.

[5] K. F. Sagonas, C. Stavrakakis, and Y. Tsiouris, “Erllvm: an LLVM
backend for erlang,” in Proceedings of the Eleventh ACM SIGPLAN
Erlang Workshop, Copenhagen, Denmark, September 14, 2012,
T. Hoffman and J. Hughes, Eds. ACM, 2012, pp. 21–32. [Online].
Available: http://doi.acm.org/10.1145/2364489.2364494

[6] Supported backends for GHC.,
2015-12-06
https://downloads.haskell.org/g̃hc/latest/docs/html/users guide/code-
generators.html.

[7] D. A. Terei and M. M. T. Chakravarty, “An llvm backend for
GHC,” in Proceedings of the 3rd ACM SIGPLAN Symposium on
Haskell, Haskell 2010, Baltimore, MD, USA, 30 September 2010,
J. Gibbons, Ed. ACM, 2010, pp. 109–120. [Online]. Available:
http://doi.acm.org/10.1145/1863523.1863538

4 2016/1/19


