
Extending ExtendJ with CUP2 Parser Support
Project in Computer Science – EDAN70

January 28, 2016

Karl Rikte
D10, Lund University, Sweden

atf07kri@student.lu.se

Abstract
JastAdd[9] is a project developed at the CS departement of Lund
University to add easy AOP (Aspect Oriented Programming) to the
Java language, which is useful for AST generation in compilers.
Many projects that use JastAdd also use the Beaver parser.

This paper aims to address how to use alternate parsers with
JastAdd projects. It focuses - in particular - on adding CUP2[7]
parser support to ExtendJ[6], a compiler for the Java language,
written in Java, using JastAdd.

Different methods to implement additional parsers support were
investigated, and the approach involving the least refactoring was
taken. A parser grammar translator program, for easy CUP2 inte-
gration with JastAdd projects that use Beaver, has been developed.

Performance and features evaluation has been conducted com-
paring the Beaver parser to CUP2.

1. Introduction
JastAdd is a framework for building an AST (Abstract Syntax Tree)
from a grammar specification. JastAdd adds the possibility of AOP
(Aspect Oriented Programming) to Java, [4] meaning a file can
contain all code for a specific functionality, and add methods to
many different Java AST classes. JastAdd also allows inherited
attributes (inheriting from ancestor nodes, not Java inheritance),
circular attributes, etc. JastAdd will be described in more detail in
section 3.1.

JastAdd is often used together with Beaver, a parser generator.
Beaver takes a parser grammar in the form of a .beaver file. It
produces a LALR(1) parser with token definitions written in the
Java language. [8] Beaver is quite mature and works well, however,
Beaver has it’s minor imperfections, as discussed in 3.2,

CUP2 is a very new parser generator that is actively developed.
It is the successor of the commonly used parser generator CUP. It
has many exciting features that few other parsers have, as it uses
Java to express grammar. [7] CUP2 will be discussed in section 4.

As Beaver has some minor imperfections that could possibly be
addressed by other parsers, and it may be interesting to compare
the speed of Beaver to the speed of other parsers, it was decided to
evaluate other parsers for use with JastAdd projects.

Thus, the goal of this paper is to show how multiple parser
generators can be integrated with JastAdd, and to evaluate CUP2
as an alternative to Beaver in this context.

The JastAdd project of choice was ExtendJ[6], a compiler for
the Java language, written in Java, using JastAdd. As ExtendJ is a
quite large and advanced project, and it has many tests, it should be
ideal for use for parser evaluation purposes. ExtendJ is built to be
extendable, using the principles discussed in [5], which was another
reason to choose it as a target project.

To achieve the goal, I have developed a grammar translation
program, BeaverToCUP2, to aid in migrating from Beaver to
CUP2. It also showcases a modular parser architecture, support-
ing use of either Beaver or CUP2 at runtime. This will be discussed
in section 5.

The results from the evaluation conducted in this project can
be summarized as follows: CUP2 is currently approaching beta
state, and seems to be fully working, but is a bit lacking in start up
performance. The parsing speed is about 20% slower than Beaver,
however, parsing time is a small part of the total compile time in
ExtendJ, as seen in section 7.3.

Future work could tell if the added features are worth the perfor-
mance penalty. Also, as CUP2 matures, it may become faster than
it is today.

2. Additional goals
In addition to the main goal discussed above, further goals of the
project were set up as follows:

• Ease of integration:

Minimize modifications to ExtendJ build system and source
code

Minimize modifications to JastAddParser (used by ExtendJ)
• Ease of use and maintainability:

Good, simple, extendable design, reducing the need for
comments and decumentation.

Produce well formatted and human readable output, with
comments where necessary.

• Evaluation of CUP2 compared to Beaver:

Features and stability

Performance
• Provide feedback to developers of ExtendJ and CUP2:

Bug reports

Potential future refactoring that could be beneficial for mul-
tiple parsers support for JastAdd projects

3. Background
ExtendJ makes use or a couple of different projects. These will now
be discussed. How they interact will be explained in figures and in
text.



3.1 JastAdd
JastAdd, as mentioned earlier, allows AOP (Aspect Oriented Pro-
gramming). Development using JastAdd is normally done as fol-
lows:

• Describe the AST node classes in an .ast file:

What AST class has which children AST classes, and are
the children optional or lists.

What AST classes extend other AST classes.
• Declare methods and fields in .jrag files:

A single .jrag file can declare functions and fields in mul-
tiple generated AST classes, using ClassName.name nota-
tion.

Declare how attributes (methods or values) are inherited
from parent nodes (not by use of java inheritance).

JastAdd supports many more features and use cases, for more
in-depth analysis, please consult [4] and [5].

3.2 Beaver
Beaver is an LALR(1) [1] parser generator. It takes a grammar
expressed in EBNF [3], with semantic actions (code that runs
each time the parser decides to reduce). Many reference grammars
fail with LALR(1) due to being ambiguous. [2] Beaver allows
precedences to be set, which allow otherwise ambiguous grammars
to be unambiguous.

Beaver works very well with JastAdd but there are a couple of
minor imperfections that need to be handled.

Beaver does not support multiple grammar files. Working with
say, a compiler with a very large grammar, it could be beneficial if
one file could contain all grammar for expressions, and another file
all grammar for statements.

Beaver forces the AST nodes to extend one of the classes in
the Beaver system (beaver.Symbol). This is not ideal in all situa-
tions. The purpose beaver.Symbol is to keep track of line number
information, and seems to be mostly intended for use with tokens.
In many cases, none of the functionality of beaver.Symbol is used.
One may also ask why the AST should extend a class from the
parser at all, it could be considered a non modular design.

Specific line orders mandate types to be declared far from where
they are used. Scanner interface etc. may bloat the grammar. Beaver
is not actively maintained, it has not seen an update since 2012.

3.3 JastAddParser
Some projects that use JastAdd use Beaver directly, especially
small projects. Larger projects can use a preprocessor called Jas-
tAddParser to address some of the limitations of Beaver such as:

• Allow splitting grammar into several files
• Declare types close to the productions, where they are used
• Automatic generation of JastAdd’s representation for lists and

optional nodes
• Get rid of some boilerplate code, such as scanner interface,

result cast etc.

JastAddParser will produce a .beaver file for processing by
Beaver as shown in figure 1.

3.4 Early decisions
After investigating how to add multiple parsers support to JastAdd
projects, two possible options were considered:

1. Implement support for additional parser(s) in JastAddParser. In-
stead of generating a .beaver file, generate a parser specification

Figure 1. How JastAddParser is used in ExtendJ. Several .parser
files are concatenated to an .all file which is fed to JastAddParser,
producing a .beaver file for later processing by Beaver.

Figure 2. The way additional parser support was implemented.
Instead of sending the .beaver file produced by JastAddParser to
Beaver, it is sent to the grammar translator, BeaverToCUP2, pro-
ducing a CUP2 parser that can be used with ExtendJ.

for some other parser generator. JastAddParser is shown in fig-
ure 1.

2. Replace the Beaver step with a translator, that translates the
.beaver file, produced by JastAddParser, to a specification for
some other parser generator. This is demonstrated in figure 2.

Reasons for choosing option 2:

• Overwhelming refactoring required to implement additional
parsers in JastAddParser. JastAddParser very dependent on
Beaver, a complete rewrite may be in order.

• More control over the project, less dependent on others.
• Even smaller projects, which do not use JastAddParser, but

rather Beaver directly, can use CUP2. This would not be the
case if implemented in JastAddParser.

• What if it turns out that Beaver is the best parser generator? ”If
it ain’t broken, don’t fix it!” (unknown origin) all refactoring
could be for nothing.

• Simplicity of integration. JastAddParser produces beaver de-
pendent code, that is needed by ExtendJ. Use this code without
modification.

4. CUP2
CUP2 uses only ordinary Java code to express a parsing grammar.

4.1 Minimal specification
A minimal example is shown below:

import static MyCUP2Spec.Terminals;
import static MyCUP2Spec.NonTerminals;

class MyCUP2Spec extends CUP2Specification{

enum Terminals extends Terminal{
NUMERAL

};

enum NonTerminals extends Terminal{
num

};

class NUMERAL extends SymbolValue<String>;
class num extends SymbolValue<String>;



public MyCUP2Spec(){
grammar(

//grammar goes here
);
precedences(

//optional precedences go here
);

}
}

First, the Terminals and NonTerminals enums were imported
statically to be able to reference Terminal.NUMERAL as simply
NUMERAL later in the grammar. CUP2 imports were omitted
for readability. Then our specification extends CUP2Specification.
Listing all terminals and non terminals is done using enums ex-
tending Terminal and NonTerminal receptively. Declaring the type
of a terminal or non terminal is done by declaring a class with the
name of the symbol and extending SymbolValue with appropriate
type using Java generics. In the constructor, grammar and optional
precedences should be declared.

4.2 Minimal Grammar
As an example, consider the following (ambiguous) Beaver gram-
mar:

expr =
expr.l ADD expr.r {return new Add(l, r);} |
NUMERAL.n {return new Num(n);} ;

stmt =
ID.s EQ expr.e SEMI {return new Assign(s, e);} ;

In CUP2, this would be expressed as:

grammar(
prod(expr,

rhs(expr, ADD, expr), new Action(){
public Expr a(Expr l, Expr r){

return new Add(l, r);
}

},

rhs(NUMERAL), new Action(){
public Expr a(String n){

return new Num(n);
}

}
),

prod(stmt,
rhs(ID, EQ, expr, SEMI), new Action(){

public Stmt a(String s, Expr e){
return new Assign(s, e);

}
}

)
)

Note that calls to prod() are listed in grammar(). Each production
goes in a prod() call. The first parameter is the result of the produc-
tion, the second parameter is the RHS (Right Hand Side), which
goes in a call to rhs(). Alternative right hand sides, with correspond-
ing semantic actions, can listed in each prod(). Also note that only
some of the symbols in each RHS are present as parameters in the
semantic action method a(), only those symbols that have been de-
clared as carrying a value.

CUP2 also provides a simple way to assign preferences. For
information on this, or for a full description of the CUP2 parser
generator, please consult [7].

5. BeaverToCUP2
As explained in section 3.4, it was concluded that the route most
worth pursuing was to write a .beaver file to CUP2 specification
translator. It was decided to name it BeaverToCUP2.

The full source code for BeaverToCUP2, aswell as all files
referenced in this document are available at:

https://bitbucket.org/edan70/2015-cup-karl

5.1 Build process
The build script will first build BeaverToCUP2.jar with only Beaver
support. Then the resulting BeaverToCUP2.jar will run with its’
own .beaver file as input, and produce a CUP2 specification for
itself. Then the BeaverToCUP2.jar will be re-built with CUP2 sup-
port as well.

5.2 Implementation architecture
BeaverToCUP2 showcases how a modular parser architecture may
be implemented. The scanner is incomplete, and a header file must
be concatenated with the scanner for it to be processed by the
scanner generator. Which header file is used depends on the parser
in use. This way, the scanner can be kept independent of the parser
in use.

The ParserFactory can instantiate either CUP2Parser or Beaver-
Parser. Both do not necessarily need to be present. The code com-
piles anyway, as the classes are loaded dynamically, on demand.
(may throw ClassNotFoundException)

5.3 Semantic actions
Beaver automatically generates semantic action code in some
cases. This functionality had to be implemented in BeaverToCUP2
in order to work as a replacement for Beaver. Consider the produc-
tion:

expr = add;

This production, in Beaver, actually implies:

expr = add.a {return a;};

CUP2 does not provide any similar functionality. Semantic action
code, equivalent to the Beaver counterpart, had to be generated for
the following cases:

• Production symbol type matches the type of one symbol in
RHS. Return the symbol with matching type.

• Production symbol has type String, and one symbol in RHS has
type beaver.Symbol. Cast the value of the symbol to String and
return it.

• RHS has one symbol only, and the type does not match the
production symbol type. Return and hope for inheritance. (this
may fail, but it is hard to check without parsing the .ast file
aswell)

6. ExtendJ integration
6.1 Build process
First, unzip extendj-cup2.zip in the root of ExtendJ. Run additional
ant task ”cup2”.

6.2 Running ExtendJ with CUP2
Running ExtendJ is done as usual, but will use CUP2 by default.
Example:



$ java -jar ExtendJ.jar Test.java

6.3 Added files
The following files are added by extracting the patch zip: Beaver-
ToCUP2.jar, full CUP2 source code, ParserFactory, JavaParser-
Beaver and JavaParserCUP2 classes.

The ParserFactory can construct different parsers (JavaParser-
Beaver and JavaParserCUP2) that extend JavaParser by calling
ParserFactory.instantiate(). Which is returned depends on the value
of ParserFactory.which.

6.4 Modifications
The main method source file was modified to call ParserFac-
tory.instantiate() instead of new JavaParser().

The ExtendJ build system was left largely untouched. The only
required modification is to add a cup2 task, that calls Beaver-
ToCUP2.jar.

7. Evaluation
7.1 Testing
The ExtendJ Test suite contains over 1000 tests for java version 8.
After using BeaverToCUP2 to translate the parser to a CUP2 coun-
terpart, a couple of bugs were uncovered, in ExtendJ (thanks Jesper
Öqvist for fixing promptly), in CUP2 (thanks Michael Petter for
promising a future fix), and lasty but not least, in BeaverToCUP2.

After ironing out bugs in BeaverToCUP2, the ExtendJ Test
suite was run both with an unmodified ExtendJ and a copy with
integrated CUP2 support using BeaverToCUP2.

The difference in test results was about 40 tests, all related to:

1. There is something wrong with documentation comments.

2. Error handling in BeaverToCUP2 is not implemented, thus,
tests that expect specific Beaver error messages do not work.

Other than that, the same test cases pass for BeaverToCUP2+CUP2
as for Beaver. Over a 1000 tests pass!

7.2 Start up performance
Starting ExtendJ and compiling a single source code file incurs
an additional 1s to 5s performance hit with CUP2, compared to
Beaver. 1s was observed with an Intel R© Core R© i5 3750k CPU
from 2012 (used for testing). 5s was observed on an old Intel R©
Pentium R© Processor E2180 from 2007. In both cases, Windows
10 was used with Java Development Kit version 8u65.

This long start up time occurs due to CUP2 generating the parser
tables on each start up. Serializing the parser tables should - in
theory - be possible, but the deserialization is currently broken.
Reading parsing tables from a file and deserializing takes orders of
magnitude longer than just generating them from scratch. Because
of this, serialization is disabled in the code release.

7.3 Parsing speed
Evaluation was primarily conducted by compiling Apache Com-
mons IO 2.4 repeatedly. The performance of the parser was isolated
from the rest of ExtendJ by using a software stopwatch approach.
The stopwatch was added in ExtendJ and is initialized in paused
state. Whenever parsing of a file starts, the stopwatch is resumed
(starts counting up the time), and whenever the parsing finishes,
the stop watch is paused. When compiling is finished, the time is
printed to standard output. The result is that CUP2 is about 20%
slower than Beaver, as can be seen in figure 4. However, this is a
small part of the total compile time, as can be seen by comparing
the parse time to the total time, as seen in figure 3.

Figure 3. ExtendJ performance using CUP2 vs using Bevaer com-
piling Apache Commons IO 2.4. Javac is included as a reference.
The rightmost result is a best case prediction when the deserializa-
tion bug of CUP2 has been resolved. (the time it takes to generate
the parser tables has been subtracted)

Figure 4. CUP2 vs Beaver parsing Apache Commons IO 2.4. (the
lexer time is also included in this, but not start up time or compile
time.

7.4 Features, stability etc.
CUP2 is the successor of CUP, a commonly used parser generator.
CUP2 is in active development, features are added often and bugs
are resolved, based on the commit log. [7] The developer listens to,
and appreciates, change requests, suggestions and bug reports.

CUP2 supports all features of the Java language such as:

class Java8Parser extends Java7Parser

This could open up interesting possibilities, provided grammar can
be written so that only productions have to be added in Java8Parser,
not removed or changed. Also, debug productions could be added
based on java if statements, etc.

CUP2 has proven stable enough for use with ExtendJ to com-
pile Apache Commons IO 2.4. No stability problems have been
observed.

CUP2 has working parser generators for several parsing algo-
rithms. Supported algorithms include: LL(k), LR(0), LALR(1) and
LR(1). Provided, that the grammar in question supports the parsing
algorithm of choice. These can be selected at runtime, by passing
the specification class, containing the grammar, to a generator class.

8. Related Work
Testing the original CUP parser generator with JastAdd projects
could also be of interest, this has been studied by another group of
the course Project in Computer Science – EDAN70. The report is,
however, not yet released.



9. Future work and suggestions
To keep modifications to a minimum, some hacky code is present
in the file JavaParserCUP2.java, that is part of the ExtendJ patch.
Specifically, the scanners return Beaver tokens. These are converted
into CUP2 tokens (by putting the Beaver tokens as values inside
CUP2 tokens). Thus, semantic action code expecting beaver sym-
bols will still work.

It would be much better if when the scanners were constructed,
they were given a parser instance, which has a method construct-
Token, or similar. constructToken could then construct appropriate
tokens based on which parser is being used.

One other suggestion is that scanners could package tokens
inside some container object with line and column information.
This line and column information could then be used by JastAd-
dParser instead of relying on beaver.Symbol for this purpose. If
this was done, swapping parsers would allow getting rid of all
beaver.Symbol dependencies.

It could be of interest to investigate how grammar and prece-
dences interacts with Java inheritance in CUP2, as mentioned in
section 7.4. However, this is beyond the scope of this project.

10. Conclusion
CUP2 has many exciting features. However, CUP2 is not quite ma-
ture enough for production use. The test results suggest it is about
20% slower than Beaver. ExtendJ patched with CUP2 support us-
ing BeaverToCUP2 passes as many ExtendJ tests as the unchanged
ExtendJ (except for comments, and expected beaver specific error
messages).

A translation program, BeaverToCUP2, is provided at:

https://bitbucket.org/edan70/2015-cup-karl

This repository also contains a zip file, cup2-extendj.zip, that
when extracted into the extendj root folder, adds support for the
CUP2 parser. The cup2 support is built with ”ant cup2”, and the
resulting extendj.jar can be run with the flag to use CUP2.

Acknowledgments
The following people have been helpful in the development of this
project. Thanks to:

• My supervisor, Christoff Bürger, for advice and feedback.
• Jesper Öqvist, developer of ExtendJ, for fixing ExtendJ bugs

uncovered.
• Michael Petter, developer of CUP2, for swift correspondence

and bug verification, with promise of a fix.

References
[1] Practical Translators for LR(k) languages. DeRemer, Franklin L. (1969)

Cambridge, Mass., M.I.T. Project MAC
[2] LR Parsing: Theory and Practice, Nigel P. Chapman, (1987) Came-

bridge University Press. p. 86-87
[3] Extended BNF - A generic base standard. Roger S. Scowen. (1993)

Software Engineering Standards Symposium
[4] JastAdd - an aspect-oriented compiler construction system. Görel

Hedin, Eva Magnusson. (2003) Science of Computer Programming.
Volume 47, Issue 1, p. 37-58

[5] The JastAdd system - modular extensible compiler construction.
Torbjörn Ekman, Görel Hedin. (2007) Science of Computer Program-
ming. Volume 69, Issues 1-3, p. 14-26

[6] ExtendJ project web page, Hedin et al. (2015)
http://jastadd.org/web/extendj/

[7] CUP2 User Manual. Michael Petter. (2015) http://www2.in.tum.de/ pet-
ter/cup2/

[8] Beaver Grammar Specification. Alexander Demenchuk. (2012)
http://beaver.sourceforge.net/spec.html

[9] Reference Manual for JastAdd2. Hedin et al. (2015)
http://jastadd.org/web/documentation/reference-manual.php


