
Extending a Small Language with a Java Bytecode Back End
Project in Computer Science – EDAN70

January 25, 2016

Philip Mårtensson
D10, Lund University, Sweden
ada10pma@student.lu.se

Elliot Jalgard
D10, Lund University, Sweden

ada10eja@student.lu.se

Abstract
A simple language called SimpliC with only the core constructs
from the C language and an x86 back end had been implemented in
a previous course. This project set out to extend this language with
new language constructs such as structs, global variables and more
data types. Another new addition to the language was a back end for
generating Java bytecode runnable in the Java Virtual Machine. The
result was compared in terms of execution speed with another back
end implementation using LLVM for a similar SimpliC language
and corresponding extensions developed by two other groups.

1. Introduction
This project was done in the context of a follow up course for a
compiler course, where the task was to work on a project related
to compilers. The purpose of this specific project was to extend
a small previously written language called SimpliC with new lan-
guage constructs and a new back end to support code generation
for the Java Virtual Machine (JVM). The base language, SimpliC,
already supported many of the necessary language constructs from
other languages. Among these were functions, if- and while state-
ments, local variables, boolean comparisons and arithmetic oper-
ators. Moreover, this language had to use integers for everything.
The extended language constructed in this project added support
for structs, variables with global scope as well as the primitive data
types booleans and floats.

The extension of language constructs was done in order to create
a more interesting language. Seeing as structs are basically public
classes, it would be a very interesting feature to add to this sim-
ple language. However, the main interest in this project was not the
extra language constructs, but rather the implementation of a Java
bytecode back end. Many compilers today already compile into
bytecode in order to run on the JVM, for example Scala (Odersky
et al. 2004), Jython (Pedroni and Rappin 2002) and JRuby (Nutter
et al. 2011). The SimpliC language is by no means fairly compa-
rable to those languages since it is much smaller. But it is a good
project for the purpose of understanding compiler construction with
a simple Java bytecode back end. Being able to run a custom lan-
guage in the JVM has many advantages because of the huge install
base of the JVM in various devices.

The result of the project was a complete back end for the
extended SimpliC language. All of the mentioned extensions were
done and some evaluation programs were constructed and the result
of those were compared to other projects implementing the same
language but with a another back end for LLVM instead of Java
bytecode. The evaluation results showed that our implementation
is not as fast as fast as the code generated by LLVM, but still
acceptable considering its short development time and scope.

2. Background
The construction of a compiler can be abstracted to a front end and
a back end. The front end is responsible for the lexical-, syntactic-
and semantic analysis. The back end is responsible for the actual
code generation and optimizations. The compiler written in this
project made use of a couple of compiler construction tools to
implement both the front end and the back end. JFlex (Klein et al.
2005) was used to handle the lexical analysis, that is scanning
of tokens from the source code. Beaver (Demenchuk 2006) was
used to parse the tokens received from the scanner and perform the
syntactic analysis. Finally, JastAdd (Hedin and Magnusson 2003)
was used to provide reference attribute grammars and static aspect
oriented programming in order to efficiently and modularly be able
to constructs parts of the semantic analysis and the back end code
generation.

2.1 Java bytecode
Writing a compiler back end to support Java bytecode allows the
code to run in the JVM. Being able to run code in the JVM is a
great advantage due to the fact that the JVM has been ported to
many devices and operating platforms. In other words, the exten-
sion of a Java bytecode back end would effectively make any lan-
guage platform independent as long a the JVM is available for the
platform.

Java bytecode has similarities with many other low level lan-
guages, for example the common arithmetic instructions such as
add, mul and sub are all present (Lindholm et al. 2013, Chapter 6).
The same goes for instructions to call methods and return from
them. However, Java bytecode is also very different from many low
level languages, such as x86- and ARM assembly. This is due to the
fact that a lot of the instructions actually map directly to the high
level constructs seen in Java. For example the new and instanceof
instructions which have the same purpose as in the Java language.
Another difference is that Java bytecode lack the common move-
instructions often used in low level languages to move data across
registers.

One more thing about Java bytecode that is relevant to the back
end implementation is that there is no official standalone assembler
for generating runnable Java bytecode from a textual representation
of it. However, there are several third party solutions to this, for
example Jasmin (Meyer).

2.2 The Java Virtual Machine
The JVM has some important features relevant to the back end
implementation. One thing is that there are very few registers in the
JVM, or more specifically, there are no general purpose registers
usable by the programmer. The JVM instead expects the bytecode



to make use of the stack in order to store intermediate calculations,
return values and function arguments (Venners 1996).

Another feature of the JVM is that there is no way for the byte-
code programmer to access direct memory locations of the pro-
gram loaded into the JVM without the use of a special class (Katsov
2012). The bytecode instead makes use of something called local
variables in the JVM, which have the ability to store the different
data types available in the JVM. These local variables are reset for
each method and is counted from index zero and upwards. How-
ever, the first n local variables are reserved for the method argu-
ments (Lindholm et al. 2013, Chapter 2.6).

The final important feature is the fact that the JVM takes com-
plete control of the program counter and stack pointer, and there is
no way to manipulate these registers through Java bytecode (Lind-
holm et al. 2013, Chapter 2.5).

2.3 Jasmin
Due to the lack of any official assembler for Java bytecode, a
third party tool called Jasmin can be used for exactly that purpose.
Jasmin takes as input the textual representation of the Java bytecode
describing a class. It will then output a .class-file runnable in the
JVM.

Jasmin extends upon Java bytecode by introducing assembler
directives and labels for jumps. These assembler directives are used
to for example specify which part of the code is a method or a field,
but it can also be used to specify limits for the stack and number of
local variables in the JVM (Meyer 1996).

In Jasmin, the Java types when used in the context of method
declarations or use of objects use a specific name. The ones used
by this compiler are the following:

• int - I
• boolean - Z
• float - F
• An object - Lclass name;

3. The front end implementation
The first thing that was to be done in the project was to extend the
SimpliC front end with support for the new language constructs.
Each of these constructs are presented below along with more
details of how they were implemented.

3.1 Floats and booleans
The support for floats and booleans was implemented by construct-
ing tokens for float and bool strings in the JFlex scanner, thus
adding them as keywords to the language. The implementation of
the actual use of these data types was also defined as tokens in
JFlex, true and false were made to return boolean types. The
floats were defined with the regular expression:

([0-9]+ "." [0-9]*) | ("." [0-9]+)

This allowed floats to be used without unnecessary zeros either
before or after the dot, but having at least one digit.

Afterwards, since the only primitive data type available in the
base language was integers, there needed to be some additional
type checks implemented in the front end. This was done by adding
types for the new data types as well as a type called TypeMismatch
which is received when two different primitive types are com-
pared in a program. Using this approach the errors could easily
be collected during the semantic analysis with JastAdd collection
attributes.

Since the SimpliC language does not support type casts, several
predefined functions were defined in order to convert between the
new data types that were introduced.

3.2 Global variables
In order to support global variables, the abstract grammar describ-
ing the program structure had to be modified. Previously, the start
node Program only consisted of several function declarations and
no variables. The Program node was thus changed to consist of a
list of the abstract node GlobalDecl, describing a global declara-
tion. Every node describing a function, struct or variable defined or
declared at a global scope were made to inherit from GlobalDecl.

When the abstract grammar and related lexical and syntactic
analysis were done, all that needed to be done to complete the
support for global variables was to extend the lookup pattern for ID
uses so that declarations for variables also can be found at global
scope. This was done using reference attribute grammars to state
that if no declaration was found within a function, then it should do
a lookup at the global scope as well.

3.3 Structs
The final and most complex language construct to be added was the
support for structs. The main difficulty of structs resided in the fact
that declarations for the struct member variables resided inside of
the structs own compound statement, which is not visible from the
rest of the program.

The structs were designed to be similar to the ones found in the
C language, but with the exclusion of some more complex and op-
tional functionality. The abstract grammar for the structs are simply
defined as:

StructDecl : IdDecl ::= Declaration*;

Which is stating that the struct in itself is a declaration for itself, but
it also contains many other declarations (i.e. the member variables).

An example of a complete struct in the language may look like
the following:

struct S {
int a;
float b;
S s;

};

As seen, structs are declared using the struct keyword and then
an ID to name the struct type. The struct can then be declared for
example as S myS; and the member variables can be accessed by
writing for example myS.a or myS.s.b. When an ID use which ac-
cesses member variables is used, a StructUse node is constructed
in the abstract syntax tree. The StructUse node is defined to in-
herit from IdUse, as well as having an additional IdUse to repre-
sent the field member. In JastAdd abstract grammar this is written
as:

StructUse : IdUse ::= Field:IdUse;

This design allowed for chained uses of member variables while
still retaining the use of the IdUse node which has a well estab-
lished lookup pattern.

However, the lookup pattern for IdUse is not enough due to
the fact that member variables are declared in their own scope in
the struct definition. It may also be the case that an intermediate
StructUse in the member access chain is not declared. Due to
this a more elaborate approach was needed in order to implement
the structs during semantic analysis. The chosen approach to this



was to introduce a new method evaluated for StructUses during
the declaration lookup. This method was called fullName() and
returned a string representing the ”full name” of the StructUse.
This string could then be split up and recursively be evaluated
in the usual lookup pattern for ID uses. To provide and exam-
ple of the functionality of fullName(), consider the StructUse
a.b.c.d, where a, b and c are instances of the structs S1, S2 and
S3 respectively. The resulting string for the StructUse when it
calls fullName() would be the string S1.S2.S3.d. If any mem-
ber along the chain is missing a declaration, then that member
would be replaced by the string <UknownStruct>, for example
if c was undeclared in the previous example, the resulting string
would have been S1.S2.<UnknownStruct>.d. Note that the use
of <UnknownStruct> will not conflict with any existing struct dec-
laration due to the fact that the special characters < and > can not
appear in a SimpliC program.

In addition to this, the structs also have their own lookup meth-
ods in order to make sure that the declaration of the member vari-
ables are unique and correct. However the lookup will only look at
the declarations within the struct definition since structs members
are in their own name space.

Finally, a new keyword delete was introduced for structs. This
was done in order to be able to free the memory on the heap, as
there is no support for any null keyword in the SimpliC language.
This keyword was implemented as a statement which accepts a
variable declared with a struct type.

4. The initial back end approach
When implementing the back end we considered two different ap-
proaches. The first one was to generate Java bytecode directly, the
second one was to generate a textual representation of the byte-
code which could later be assembled into the actual bytecode. Since
the latter approach required a third party assembler, a decision was
made to try doing the first alternative.

Generating Java bytecode directly proved to be more difficult
than initially assumed. This was mainly due to the fact that the
JVM requires a lot of additional information in the .class-files
aside from the actual bytecode in order to be able to run it. As
a result all of this extra information needs to be generated by the
back end.

The contents required in a class-file is documented by the Java
authors (Lindholm et al. 2013, Chapter 5). The most interesting
content is the constant pool. This structure contains a lot of infor-
mation about the class described by the class-file, and contains
UTF-8 strings of all class and method names used in the class,
among other things.

An attempt was made to implement the generation of data
needed in the class-files. The attempt was partly successful as
the back end was able to generate a boilerplate class-file able to
run bytecode inside the Java main method. While this approach
worked, it ended up needing a lot of generation of boilerplate code
for every new construct. Because of this, this approach was aban-
doned since it would just result in a lot of uninteresting data gen-
eration for the JVM. The original thought was that the focus of the
project should lie in the generation of the bytecode, not the extra
data needed by the JVM, even though it is important. A decision
was thus made to switch the back end implementation to instead
make use of the third party Java bytecode assembler Jasmin.

5. A back end with Jasmin
Using Jasmin allowed the back end to be implemented in a very
similar way to the already existing x86 back end for the base
SimpliC language, that is the generated code is represented as a
readable text suitable to be used with an assembler. In the following

subsections, the implementation of each of the major language
constructs will be presented.

5.1 Java boilerplate code
Jasmin and the JVM expects the bytecode to follow the Java stan-
dards, such as requiring the declaration of the main-method to ex-
ist and to be declared with public and static identifiers. This boiler-
plate code gets generated by the compiler by creating a new class-
file containing a class named SimpliC, this class contains the Java
main-method and the obligatory constructor calling the construc-
tor of the Java class Object. The reason the Object constructor is
called is due to the fact that all Java classes inherit from this class,
even if it is not visible in the source code for the class.

5.2 The global variables and functions
The first things that needed to be generated from the SimpliC
language were the global variables. This was due to the fact that
global variables were implemented as the public and static fields of
the class, and Jasmin requires all fields to be generated before any
methods.

When the global variables are generated, the compiler moves
on to generate the functions and global structs. The functions are
generated as Java methods with public and static identifiers. Jasmin
requires the methods to specify the maximum limit of the method
stack and local variables with assembler directives. In this compiler
these values are hard-coded to be sufficiently large for all of our test
cases. In a more elaborate compiler these values might be able to
be computed for better efficiency.

5.3 The structs
Structs were chosen to be represented as a normal Java classes
where the member variables are represented as public fields in that
class. This was the most reasonable representation since Java does
not have any support for structs, but structs can be seen as a class
with only public members. Since a Java class-file can only contain
one class definition, the generation of each struct must use a new
file stream and produce a new class-file containing the obligatory
constructor. The need for new files actually ends up making the
implementation of structs defined inside of functions much easier,
as they are generated in a separate file and will not interfere with
the other code inside the function.

Accessing struct members can be done by looping through
a StructUse until the final IdUse is found. For each step in
the loop, the struct object is loaded from it’s location with the
aload/getstatic or getfield instructions depending on if it is
a local/global declaration or a struct member.

The actual objects created by defining a variable with a struct
type are created by using the new instruction in Java bytecode. This
new is the same as the one used in the Java language, and will thus
construct the object on the heap of the JVM. To be able to free the
memory used by a struct variable, the delete keyword is used. This
will set the object reference to null so that the garbage collector will
be able to remove it from the heap.

5.4 Jump constructs
The jump constructs, that is if- and while-statements were im-
plemented using the bytecode instructions ifeq and goto, along
with Jasmin labels. Since labels needed to be unique for each
method, JastAdd reference attribute grammars were used to cal-
culate a unique name based on the source code line number. This
functionality was actually already present in the base SimpliC lan-
guage, but slightly modified and extended due to the extensions,
but the idea was the same.



5.5 Arithmetic operations
The arithmetic operations add, subtract, multiply, divide and mod-
ulo were all easily implemented with corresponding Java bytecode
instructions. The values used in the calculations are simply put on
the stack before calling the arithmetic instruction.

5.6 Boolean comparisons
The implementation of boolean comparisons became a bit more
complex due to the new data types introduced. Java bytecode con-
tain different comparison and jump methods depending on the
type of the input. For integers and object types the instructions
if icmpxx and if acmpxx could be used respectively. The xx part
is replaced by the postfixes eq and ne in the case of if acmpxx, and
eq, ge, gt, le, lt and ne in the case of if icmpxx. In these cases
all different supported comparisons are supported by the postfixes.
However, there is a lack of postfixes to support all comparisons for
the float type in Java bytecode. In the case of float types, only the
instructions fcmpl and fcmpg can be used to compare less than and
greater than respectively. These instructions can be combined with
the more general instruction ifxx, which has the same postfixes as
the if icmpxx instruction, in order to provide better float compar-
isons even though floats should not be compared with equality.

5.7 Predefined functions
The predefined functions were hard-coded directly into the back
end generation, constructing all of the predefined functions as nor-
mal Java methods.

The predefined functions that were defined for the language
were:

• print() - Prints argument to standard out. Accepts ints, floats
and bools.

• readInt() - Reads from standard in. Accepts ints.
• readFloat() - Reads from standard in. Accepts floats.
• readBool() - Reads from standard in. Accepts booleans as the

strings ”true” or ”false”.
• trunc() - Casts a float to an int.
• intToBool() - Casts an int to a boolean.
• floatToBool() - Casts a float to a boolean.

6. Evaluation
The performance of the language was evaluated with three different
tests using binary trees. All test cases were run three times, and then
the mean value of the execution time was noted. The execution time
was measured with a bash script calculating the difference between
start time and end time of the actual execution. The results were
compared with the result of two other groups who had done the
same project but with an LLVM back end instead of a Java bytecode
back end. The three tests were the following:

• Test 1: To build a tree recursively, and then iterate through the
nodes.

• Test 2: To build a tree iteratively, and traverse it recursively.
• Test 3: To build a tree statically using variables.

The tests were done for different sizes of the trees and on
the same computer. The result for the first test and second test is
presented in Table 1. The result for the third test is presented in
Table 2. All times include the startup time for the JVM.

Size 2000 20000 200000 200000 8000000
Test 1 97 ms 123 ms 227 ms 2094 ms 15328 ms
Test 2 97 ms 90 ms 162 ms 1039 ms 6042 ms

Table 1. Execution time for the recursive build, iterative traverse
in Test 1, and vice versa in Test 2. Size is specified in number of
tree nodes used.

Size 20 100 200 500
Test 3 86 ms 87 ms 84 ms Stack overflow

Table 2. Execution time for the statically built tree in Test 3. Size
is specified in number of tree nodes used.

Similarly, the results from the first and second tests from the
two other groups using LLVM are presented in Table 3 and Table 4
respectively.

Size 2000 20000 200000 2000000 8000000
Test 1 4 ms 9 ms 53 ms 409 ms 1593 ms
Test 2 4 ms 10 ms 38 ms Segfault -

Table 3. Execution time for Test 1 and Test 2 for the first of the
other groups. Size is specified in number of tree nodes used.

Size 2000 20000 100000 2000000 8000000
Test 1 - - - - -
Test 2 3 ms 9 ms 14 ms Segfault -

Table 4. Execution time for Test 1 and Test 2 for the second of
other groups. Size is specified in number of tree nodes used.

Finally, the results from third test for the two other groups can
be seen in Table 5 and Table 6.

Size 20 100 200 2000 20000
Test 3 5 ms 5 ms 5 ms 3 ms -

Table 5. Execution time for Test 3 for the first of the other groups.
Size is specified in number of tree nodes used.

Size 20 100 200 2000 20000
Test 3 4 ms 4 ms 4 ms 4 ms -

Table 6. Execution time for Test 3 for the second of the other
groups. Size is specified in number of tree nodes used.

The first two tests completed successfully for the Java bytecode
implementation. In contrast, both of the LLVM back ends had
problems with Test 2 for larger tree sizes, with both resulting
in segmentation faults. The tests thus showed that the generated
code handles recursion and large data structures well. However, the
execution time using an LLVM back end turns out to be much faster
than the Java bytecode one. This can be due to various factors, such
as the fact that code is generated differently, but also due to the fact
that LLVM does a lot of optimizations on the generated code before
making it executable (Lattner and Adve 2004). It is also important
to note that for the faster execution times the JVM startup time will
have a greater impact on the result. No measurement was taken on
this startup time, but it was estimated to be around 70-90 ms on the
computer in question.

Test 3 yielded some rather bad results in the case of the Java
bytecode back end. The code failed at very small tree size of 500



nodes with a stack overflow. This might have been able to be fixed
by increasing the size of the stack for the JVM or in Jasmin. But this
was never tried during the evaluation. However, the code executed
fast for the working smaller tree sizes.

As for the LLVM groups, they both yielded similar results in
Test 3, managing much larger tree sizes than the Java bytecode
back end. Both groups had trouble compiling the final test with
20000 nodes, as it had not completed the compilation even after 15
minutes.

7. Related work
Due to the small scale of the project, most of the related work is
done on larger systems taking many more aspects into considera-
tion. A lot of focus is put on optimization in many works, which is
something not taken into much consideration in this project.

One of the works in the realm of optimizations is referenced in
(Vallée-Rai et al. 2000). Which is discussing the feasibility of using
the Soot framework to optimize Java bytecode. This is interesting
because the Soot framework has support for Jasmin, the low lever
intermediate code generated by the compiler in this project. This
might be able to be used to provide more optimized code for
SimpliC.

Another work, more similar to this project, is referenced in
(Benton et al. 1998). In this paper a Java bytecode back end is
implemented for the Standard ML language, with many interest-
ing features because of Standard MLs differences due to being a
functional programming language.

Another interesting work where a language called X10 is pro-
vided with a back end for Java bytecode is referenced in (Takeuchi
et al. 2011). This work is interesting and share common problems
as seen in this project, such as the implementation of structs in
Java bytecode. This work took a similar approach and implemented
structs as Java classes, but those classes implemented an interface
to make it work better with their system.

8. Concluding discussion
In this project the base language SimpliC which was developed in a
previous course was extended with new language constructs and a
new back end to support Java bytecode. The new back end allowed
SimpliC programs to run on the Java Virtual Machine.

All constructs were successfully implemented, including structs
which Java lacks official support for. However, most of the code
runs very slow as program complexity increases. This is most likely
due to the lack of optimizations done on the bytecode. Though slow,
the code handles large structures and recursion very well as seen in
the evaluation. As opposed to the LLVM back ends the project was
compared to. The generated code does not appear to handle to many
variables on the stack however, as stack overflows start occurring
for a small number of allocated variables. This could perhaps be
easily fixed by tweaking the stack size in either Jasmin or the JVM.

As the results show, it is most likely more efficient to implement
a good LLVM back end than a Java bytecode one, due to the better
speed and options. LLVM even has support to output Java bytecode,
which is most likely better than the code generated by the compiler
in this project due to all optimizations in LLVM.

This project does not really have any real world interests, as
there are already many languages out there which provide more
and better features. Though it is interesting for learning more about
compiler construction. Further improvements to this could be to
add optimizations, maybe through Soot as discussed in the related
works section. Or to extend the language with more unique lan-
guage constructs to make it a more interesting alternative for actual
use.

References
N. Benton, A. Kennedy, and G. Russell. Compiling standard ML to java

bytecodes. In M. Felleisen, P. Hudak, and C. Queinnec, editors, Proceed-
ings of the third ACM SIGPLAN International Conference on Functional
Programming (ICFP ’98), Baltimore, Maryland, USA, September 27-29,
1998., pages 129–140. ACM, 1998. doi: 10.1145/289423.289435. URL
http://doi.acm.org/10.1145/289423.289435.

A. Demenchuk. Beaver-a lalr parser generator, 2006.
G. Hedin and E. Magnusson. Jastadd—an aspect-oriented compiler

construction system. Science of Computer Programming, 47(1):
37 – 58, 2003. ISSN 0167-6423. doi: http://dx.doi.org/10.1016/
S0167-6423(02)00109-0. URL http://www.sciencedirect.com/
science/article/pii/S0167642302001090. Special Issue on Lan-
guage Descriptions, Tools and Applications (L DTA’01).

I. Katsov. Tricks with direct memory access in java, 2012. URL
https://highlyscalable.wordpress.com/2012/02/02/
direct-memory-access-in-java/. Accessed: 2015-12-29.

G. Klein, S. Rowe, and R. Décamps. Jflex-the fast scanner generator for
java. online source, 2005.

C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual
Machine Specification, Java SE 7 Edition. Addison-Wesley Professional,
1st edition, 2013. ISBN 0133260445, 9780133260441.

J. Meyer. The jasmin bytecode assembler.
J. Meyer. Jasmin user guide, 1996. URL http://jasmin.sourceforge.

net/guide.html. Accessed: 2015-12-29.
C. O. Nutter, T. Enebo, N. Sieger, O. Bini, and I. Dees. Using JRuby:

Bringing Ruby to Java. Pragmatic Bookshelf, 2011.
M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,

N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger. An overview of
the scala programming language. Technical report, 2004.

S. Pedroni and N. Rappin. Jython essentials. ” O’Reilly Media, Inc.”, 2002.
M. Takeuchi, Y. Makino, K. Kawachiya, H. Horii, T. Suzumura, T. Sug-

anuma, and T. Onodera. Compiling x10 to java. In Proceedings of
the 2011 ACM SIGPLAN X10 Workshop, X10 ’11, pages 3:1–3:10,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0770-3. doi:
10.1145/2212736.2212739. URL http://doi.acm.org/10.1145/
2212736.2212739.

R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and
V. Sundaresan. Optimizing java bytecode using the soot framework:
Is it feasible? In D. A. Watt, editor, Compiler Construction, 9th
International Conference, CC 2000, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS
2000, Berlin, Germany, Arch 25 - April 2, 2000, Proceedings, volume
1781 of Lecture Notes in Computer Science, pages 18–34. Springer,
2000. doi: 10.1007/3-540-46423-9 2. URL http://dx.doi.org/10.
1007/3-540-46423-9_2.

B. Venners. The lean, mean, virtual machine. Java World, 1996.

http://doi.acm.org/10.1145/289423.289435
http://www.sciencedirect.com/science/article/pii/S0167642302001090
http://www.sciencedirect.com/science/article/pii/S0167642302001090
https://highlyscalable.wordpress.com/2012/02/02/direct-memory-access-in-java/
https://highlyscalable.wordpress.com/2012/02/02/direct-memory-access-in-java/
http://jasmin.sourceforge.net/guide.html
http://jasmin.sourceforge.net/guide.html
http://doi.acm.org/10.1145/2212736.2212739
http://doi.acm.org/10.1145/2212736.2212739
http://dx.doi.org/10.1007/3-540-46423-9_2
http://dx.doi.org/10.1007/3-540-46423-9_2

	Introduction
	Background
	Java bytecode
	The Java Virtual Machine
	Jasmin

	The front end implementation
	Floats and booleans
	Global variables
	Structs

	The initial back end approach
	A back end with Jasmin
	Java boilerplate code
	The global variables and functions
	The structs
	Jump constructs
	Arithmetic operations
	Boolean comparisons
	Predefined functions

	Evaluation
	Related work
	Concluding discussion

