
Viability of extending parser-generator-
frameworks for layout-sensitive languages

Project in Computer Science – EDAN70
January 18, 2016

Moritz Kobler
International exchange program, Faculty of Engineering, Lund University, Sweden

moritz.kobler@gmail.com

Abstract
While building parsers has become much easier in the last decades
due to the development of tools that allow the generation of both
scanners and parsers, such tools are still lacking if one is con-
sidering developing layout-sensitive languages. Existing parser-
generators such as Beaver often have rather simple and easy to
produce language specifications as input. Building a parser for
layout-sensitive grammars on the other hand requires a lot of man-
ual methods specific to the grammar. The reason for this dichotomy
is partly the general predominance of research into context-free
grammars.
There are languages currently in use that incorporate layout-
sensitive syntax, such as Python, Haskell or occam. At the same
time and more importantly there are also legitimate applications of
layout-sensitivity including enforcement of the source code’s read-
abilty as well as establishing parallelism between source code and
program output. This paper discusses layout-sensitivity, its uses and
usefulness and further argues that it is possible to build tools that
will enable users to define their own layout-sensitive languages.
Specifically, a first step towards facilitating the development of
layout-sensitive languages is taken by implementing parsers for
different languages using a decorator-approach on top of already
existing tools: a preprocessor is interposed between the scanning-
and parsing-phases in order to handle layout-sensitivity.

1. Introduction
While it is considered good style to use for example indentation
in order to clarify meaning and structure of source code, in nor-
mal, context-free-grammars (CFG) the active use of whitespace is
by no means necessary and is usually completely ignored during
the scanning-phase of the compiler – and thus becomes irrelevant
for the rest of the process. First mentioned by Landin in 1966, so
called layout-sensitive languages (LSLs) actively necessitate cer-
tain whitespaces and indentations.
One fundamental example of layout-sensitivity (LS) for example is
the offside-rule, also proposed by Landin which states that all to-
kens in an expression must be indented at least as far as the first
token of that same expression (see 1.1 as an example). Some con-
crete examples of LSLs are Python [1], occam [2], and Haskell [3]
and there exist many more. The Haskell-code in Listing 1.1 for ex-
ample shows the organization of block-structures through the use
of the offside-rule.
The problem of parsing a LSL is closely related to the problem

of context-sensitivity. Other kinds of context-sensitivity being for
example operator precedence – which can be solved by changing

1 n = a + b + c
2 where a = 1
3 b = c + d
4 where c = 3
5 d = 4
6 c = 5

Listing 1.1: Example code in Haskell, where blocks are structured
using indentation.

the grammar of the language – or conditional directives [4]. While
not all manifestations of LS do in fact entail context-sensitivity [4],
it can be formally proven that languages using indentation to deter-
mine nesting levels, cannot be generally described by a CFG [5].
As Afroozeh and Izmaylova point out, even despite a great deal of
research in the field of parsing, building parsers for LSLs especially
remains a laborious task. One reason is that methods developed to
parse CFGs are not applicable to context-sensitive grammars be-
cause they explicitly take advantage of the property of context-
insensitivity to achieve their parsing result. Thus, tools based on
such methods cannot (directly) be used to parse LSLs. Nonethe-
less, while for the longest time off-the-shelf parser generators that
allowed non-experts to use parsers were built mainly for languages
with CFGs [6], in recent years there has been a considerable devel-
opment in the research on creating parser generators that support
LS, mostly by extending already existing parser-tools such as Par-
sec [7].
The special quality of parser generators is that they allow the user to
declaratively state the language’s grammar without having to worry
too much about how the parser will be implemented (of course
there are still restrictions and rules to be considered). In order to ex-
tend these grammars to include LS, several authors have proposed
mechanisms to allow for the relative positioning of the grammars’
building blocks in relation to each other (more about related work
can be found in section 6).

This paper aims to shed light on the questions (i) whether it is
possible to generalize and abstract key features of layout-sensitiv-
ity in order to build an easy-to-use tool for the creation of such lan-
guages and (ii) if so, how powerful and versatile such a tool could
be.

This will be done by implementing subsets of two layout-
sensitive languages, Python and occam, in a modified parser gener-
ator framework and qualitatively assessing the generalizability of
common features found in the examined languages. A preprocessor
will be interposed between the scanner and the parser generated by



the scanner-generator JFlex and parser-generator Beaver respec-
tively. This preprocessor will be implemented on a case-to-case
basis and will edit the token stream in order to resolve problems of
context-sensitivity and output a tokens that can be interpreted ac-
cording to a CFG. In a last step a syntax for expressing LSLs called
NEWLINE will be developed and parsed by bootstrapping onto
the explored technique of parsing LSLs in order to demonstrate
the feasibility of the first steps in the creation of a layout-sensitive
parsing tool.

Section 2 of this paper will talk about LS in greater depth and
existing approaches for parsing LSLs. In section 3 the implementa-
tion of the layout-sensitive-parser as developed during the research
will be treated. Section 4 will cover the qualitative evaluation of
said parser whereas results will be presented in section 5. In sec-
tions 6 and 7 related and future work will be discussed.

2. Background
A first step towards answering the questions of this paper is to
understand what LS is and what approaches exist to parse layout-
sensitive grammars.

2.1 Layout-sensitivity
Simply put, LS describes the fact that the layout of some given
source code (i.e. the positioning of the token-representations) is
necessary for its correct interpretation. It entails the active use of
whitespace such as spaces, tabs or line breaks. The examples in
listings 2.1 to 2.3 – which are only code snippets and not neces-
sarily functioning code – illustrate the difference between layout-
sensitive and layout-insensitive syntax and reveal some of the pur-
poses of LS:

1. The most obvious reason for using LS is to enforce readable
and structured code. The Java-code in sub-listings 2.1e and 2.1d
have the exact same meaning – but the one using (optional)
indentation much more clearly conveys the structure of the
source code. While in this simple example both are in fact easy
to read, it is not hard to imagine more complex code where
readability would be severely inhibited – this especially holds
true for languages like C where code can oftentimes appear
quite cryptic.

2. Solving ambiguity issues such as the dangling-else-problem
(see listing 2.2, where indentation is used to clarify to which if-
clause the else-clause belongs instead of the insertion of an end-
of-if-specifier) or avoiding unnecessary curly braces to delimit
blocks or semicolons to delimit statements, is a more technical
reason for the use of LS. Comparing sub-listings 2.1a and 2.1c
to sub-listings 2.1b and 2.1d respectively showcases exactly
this. While Java has need of aforementioned curly braces and
semicolons, Python uses its layout to serve the same purpose.
The two Python-examples also show that discarding whitespace
would turn both snippets into the same (ambiguous) piece of
code.

3. Helping the programmer to better see the output of the program
by organizing the source code in a specific way, is perhaps the
most pure reason to use LS since it can by definition only be
solved through LS. This parallelism between source code and
program output may at first seem very abstract. Looking for
example at the markup language Markdown [8], which trans-
lates between a plain text formatting syntax and HTML, the
matter becomes clearer. In some instances, changing the inden-
tation in the source code will result in a parallel change of the
output: listing 2.3 illustrates how the positioning of the second
list-element directly translates to the output. Another example
could be a language to specify layout-sensitive grammars. By

extending already existing specification languages with layout-
sensitivity, the layout of the source code could be used to mirror
what the language that is to be specified should look like.

1 if x:
2 x=0
3 y=5

a: Language: Python.

1 if (x) {
2 x=0;
3 }
4 y=5;

b: Language: Java.

1 if x:
2 x=0
3 y=5

c: Language: Python.

1 if (x) {
2 x=0;
3 y=5;
4 }

d: Language: Java.

1 if (x){x=0;y=5;}

e: Language: Java.

Listing 2.1: Simple if-conditions in Python and Java illustrating the
differences between LSLs and layout-insensitive languages.

1 if x:
2 if y:
3 z=0
4 else:
5 z=1

Listing 2.2: Example code in Python where indentation is used to
resolve the dangling-else-problem.

1 List:
2 - 1st level
3 - 2nd level

a: Markdown source code.

List:

• 1st level

2nd level

b: Resulting output.

Listing 2.3: Simple list-definition in Markdown. The indentation in
the source code directly influences the output of the program.

2.2 Existing approaches to parsing LSLs
One main approach to parsing LSLs is generalized parsing. Given
an ambiguous grammar and a certain token stream, the basic idea of
general parsing is to simply create all possible parse trees, called a
parse forest. Only afterwards is it decided which of the parse-trees
was the intended one in an additional disambiguation phase [6].
In the context of layout-sensitivity, the layout-conditions could be
imposed upon the resulting parse forest and all parse trees that vi-
olate the conditions are discarded (until either one valid parse tree
remains or all are discarded which leads to an invalid program syn-
tax).
Another approach is interposing a preprocessor between the scan-
ner and the parser. While not exactly the same, such a preproces-
sor can be compared to a decorator as described by the decorator-
design-pattern [9]. The preprocessor will take the token stream pro-
duced by the scanner as input and add elements to it if necessary. It
can also be argued that such a preprocessor is rather a collection of
decorators, each with a special function that it chooses to apply if



the situation necessitates. The decorated token stream will then be
given to the parser that tries to produce a parse tree. The approach
is visualized in figure1. The essential point in the process is that the
token stream outputted by the preprocessor will conform to a CFG.
It is the decorator that handles any context-sensitivity.

Figure 1: Diagram of the decorator-approach to parsing LSLs.
Instead of tokens being given from scanner to parser directly, a
preprocessor is interposed.

3. Implementation of layout-sensitive parsing
The approach chosen in this research project was to interpose a
preprocessor between the scanner and the parser, from now on
referenced as the decorator-approach. It was chosen for several
reasons:

• There are already very good and easy-to-use tools allowing for
an easy implementation of both scanners and parsers. Using a
decorator-approach takes advantage of these tools and extends
them.

• Separating scanner and parser allows for high versatility and
modularity, since tools that become less well-maintained or
simply out of date can be easily replaced by more current ones.

• It seems a very intuitive solution to take the original token
stream and edit it in order to fulfill the parser’s requirement.
This makes it easy to comprehend and implement.

• While other approaches such as generalized parsing have lim-
ited practical applicability (due to efficiency-considerations in
the case of generalized parsing), this is not the case with the
decorator pattern.

Specifically, the tools chosen were JFlex and Beaver. JFlex is a
scanner generator that takes a specification with a set of regular
expression and outputs a scanner written in Java [10]. Beaver is a
LALR(1) parser generator taking a CFG in Extended Backus-Naur
form and outputting a Java-based parser for the grammar [11].
As described in the previous section, the basic idea was to build
a preprocessor that would take the token stream as outputted by
JFlex and produce a new token stream fulfilling the requirements
of Beaver by adding certain tokens at the appropriate place. Look-
ing at the tools chosen, using Java as a base for the preprocessor

was the obvious choice. The entire project can be found online [12].

3.1 Languages
The next question presenting itself was which languages, or subsets
of which languages, were to be used in order to be able to find
solutions for general features used in many LSLs. In the end,
the choice fell on Python and occam. Python on the one hand
is a good example of a LSL that is currently in use and widely
known and points of interest include block-structures and forced
line breaks (i.e. forcing the use of line breaks in order to achieve
for example a separation of statements). On the other hand, occam
is a much less known language, ”designed to express concurrent
algorithms and their implementation on a network of processing
components” [2]. It has nonetheless interesting features in regard to
its LS such as continuation lines and exact indentation requirements
of blocks (it necessitates an indentation of exactly two spaces, see
listing 3.1 for an exemplary code-snippet). The subsets examined
were then chosen by the relevance of the features in regard to
LS. In the case of Python this meant, that a program could be a
collection of statements, with one statement type being full fledged
if-statement allowing nesting – thus both forced line breaks and
nested blocks were considered. The relevant part of the occam-
subset included assignments with possible continuation lines and
sequence definition that allowed for exactly indented blocks.

1 SEQ
2 x := 0
3 y := 1

Listing 3.1: Simple sequence-definition in occam. The block-
structure has to be indented exactly two spaces.

Two other candidate-languages should be mentioned. Firstly,
there is Haskell which is also very well known, especially with
functional programming languages currently getting a lot of at-
tention. But it might not in fact be the best example of a lan-
guage that makes use of LS since code can also be written in a
layout-insensitive way by using curly braces and semicolons. An-
other problem lies in the parsing-process of the Haskell language:
a clear separation of scanning and parsing in Haskell is not en-
tirely possible. Certain circularity-issues require the interaction
of scanner and parser and thus prohibit a linear process. This is
the reason why practical implementations of Haskell compilers
often merge scanning and parsing phases [13]. Considering the
decorator-approach of this research, Haskell did not seem an ap-
propriate choice. Secondly, there is Markdown which very nicely
illustrates the parallism-argument for the use of LS. However, there
is no standard way of interpreting input, since it has never been
properly defined, and is thus very heterogeneous with many differ-
ent possible syntaxes. Another issue is that Markdown produces no
parsing errors because every part of the source code is just trans-
lated into HTML – even though it might not make for a great result.
In a last step of the research, an independent language titled
NEWLINE was developed that specifies a syntax for expressing
LS grammars and could potentially be used in a LSL-tool. Using
the insight and code from the previous efforts of building parsers
for Python and occam based on the decorator-approach, a parser for
NEWLINE was programmed. Listing 3.2 shows exemplary code in
the NEWLINE-syntax where the right-hand-side of first production
(lines 1&2) specifies that statements are seperated by line breaks,
the third production (lines 6&7) defines an if-statement as con-
sisting of an if-part and an equally indented else-part – the single
quotation mark serves as a point of reference – and the forth and



fifth productions (lines 9&10 and 12&13 respectively) specify that
the statements inside if- and else-blocks be further indented than
the reference points.

1 stmtlist = stmt | ’stmtlist
2 stmt
3

4 stmt = ifstmt | ...
5

6 ifstmt = ’ifsuite
7 (=) elsesuite
8

9 ifsuite = ’IF cond
10 stmtlist
11

12 elsesuite = ’ELSE
13 stmtlist

Listing 3.2: Possible NEWLINE grammar specification for if-
statements. Indentation is used to convey information about layout-
sensitivity in the output-language.

3.2 Insertion of relevant tokens
The insertion of the relevant tokens was managed by analyzing
the different roles every token might play in regard to features of
layout-sensitivity and then having the same methods executed at
each instance of a certain role. Consider aforementioned example
of a simple if-clause from listing 3.3, and a grammar as specified
in listing 3.4.

1 if x: # IF-token triggers block
2 x=0 # ID("x")-token starts block
3 y=5 # ID("y")-token ends block

Listing 3.3: A simple if-statement in Python illustrating that tokens
can be assigned several roles.

1 program = stmt_list;
2

3 stmt_list = stmt |
4 stmt_list NEWLINE stmt;
5

6 stmt = if_stmt | assign_stmt;
7

8 if_stmt = IF expr COLON
9 INDENT stmt_list DEDENT;

10

11 assign_stmt = ID ASSIGN NUMERAL;
12

13 expr = ID;

Listing 3.4: Simple grammar-specification using Beaver-conform
syntax.

Assuming JFlex discards any whitespace but line breaks, the
token stream would be missing two tokens in the if-statement that
have to be inserted: the INDENT- and DEDENT-tokens that delimit
the block-structure. Although they were named INDENT and DE-
DENT, they do not as such represent any whitespace in the source
code and could obviously be arbitrarily named. Looking at the roles
of the tokens, it is clear that the IF-token in the example is both

trigger of the coming block as well as reference point for any in-
dentation inside the block. The first token of a statement-list, i.e.
any element of FIRST(stmt_list), is the token deciding whether
the statement is inside or outside the if-clause. Taking into account
the two statement-types, if- and assignment-statements, we get the
following:

FIRST(stmt_list) = ... = {ID, IF}

Considering that the block of an if-statement contains a statement-
list and a program can be comprised of several consecutive state-
ments, an ID-token in the example can have two different roles:
(i) starting a block-structure (as seen at the beginning of line 2)
and (ii) ending a block-structure (as seen at the beginning of line
3). Thus, when reading an ID-token, the relative indentation to the
reference point needs to be checked, and in the case of a bigger
indentation, an INDENT-token needs to be inserted before the token
whereas in the case a smaller indentation the insertion of a DEDENT
token is required. In the example this would lead to an if-statement
parsable by the above production-rule.1 These same considerations
would also need to be made for nested or consecutive if-statements,
which would assign additional roles to the IF-token, since IF ∈
FIRST(stmt_list). In principle this process of defining relevant
waypoints needs to be repeated for every layout-sensitive feature
that requires the insertion of tokens. In addition, possible inter-
dependencies between these different decorator methods, mainly
caused by single tokens being assigned multiple roles, need to be
checked and if needed resulting errors solved on a case-to-case-
basis.

3.3 Practical considerations
While the premise of LS is to not discard whitespace, in the practi-
cal implementation of the parsers some whitespace such as spaces
were in fact discarded by the scanner. At the same time, JFlex itself
provided column- and line-counting methods that assigned corre-
sponding values to every token. These values were then used in the
preprocessor to determine the indentation relationships.
In all the implementations where the use of tabs was supposed to
be supported, those tabs were not discarded by the scanner. This
had the simple reason that the provided counting-methods actually
counted characters and as such tabs where considered to have a
width of 1 which lead to unwanted errors. Thus, the preprocessor
needed to perform a column-correction, given some arbitrary width
of a tab, and delete all TAB-tokens post-scanning.
In the exemplary implementation in section 3.2, line breaks were
not discarded. This was also the approach used in the parser for the
NEWLINE-language. It has the advantage of not having to com-
pare line-counts as well as column-counts, but to simply incorpo-
rate the NEWLINE token in the parser specification. It does require
the deletion of some unnecessary NEWLINE-tokens in certain cases
though and some preprocessor-methods need to be programmed
containing an offset in order to account for the NEWLINE-tokens.
Contrarily, in some of the implementations for Python and occam
the line breaks are in fact discarded by the scanner. While using this
approach necessitates the comparison of line-counts at the appro-
priate places, it also seems to be a more consequent implementation
in the case of block-structures. Both approaches are viable as long
as the preprocessor code is adapted accordingly.

1 In this specific case, the COLON-token could have been used in some form
as well – such a delimiting token is not always at hand though, as can be
seen at an occam-sequence.



4. Qualitative evaluation
The qualitative evaluation was made with the paper’s main ques-
tions in mind of whether it is possible to create a tool that makes
building LSLs easier and if so, how versatile such a tool can be.
The possibility of quantitative evaluation was considered, for ex-
ample in the form of a comparison of the same languages (or sub-
sets), once using a layout-sensitive syntax implemented in the JFlex
and Beaver environment and once using layout-insensitive syntax
within the same environment with the difference of the preproces-
sor being interposed. It was concluded that the effort of doing this
would outweigh the gain and a qualitative evaluation would con-
tribute to a better understanding of the results.

4.1 Generalizability
Having considered only small subsets of languages or only small
languages, it is hard to judge the overall generalizability. It was
mostly possible to find general solutions for the main features of
layout-sensitivity as studied in this research project, namely block-
structures, forcing of line breaks and continuation lines. Especially
in the case of blocks, a generalization could be achieved regardless
of what kind of indentation was required (e.g. exact indentation,
bigger indentation, same indentation etc.).

4.2 Difficulties encountered
Even given the overall success at generalizing key concepts, it is
important to note that there were considerable difficulties even at
these small scales. There were two kinds of problems that arose
during development. The first kind was of a technical nature, and
mainly caused by the choice of scanner- and parser-generator, such
as an initial issue disallowed the mixing of tabs and spaces due to
a overly simple method of counting columns by JFlex or the ques-
tion whether it is better to let the scanner recognize line breaks and
insert an appropriate token. Issues of this first kind were largely
solved and do not inhibit generalizability.
The second, and far more relevant set of problems were of a con-
ceptual nature and had the following two reasons:

• Interconnectedness of layout-sensitive features (e.g. a continu-
ation line within a block)

• The same token can have many different roles (e.g. beginning
and ending of a block)

Even in the minimal example in section 3.2, problems of this
kind appear, as several tokens are assigned multiple roles. Imag-
ining larger languages with multiple different instances of layout-
sensitive features would only worsen such issues. In the research
project these problems often had to be solved using conditions spe-
cific for each case and were thus not dealt with in a general fashion.
This however does not necessarily mean these problems cannot be
solved in a general way, just that it might not be trivial and it was
not possible in the given time frame.

5. Results
During this research, key features of LSLs were identified, namely

• block structures (e.g. nested statements inside if-clauses),
• forced line breaks (the use of line breaks as a requirement to

separate certain elements such as statements), and
• continuation lines (after specific tokens a language might allow

line breaks that escape the usual treatment in regard to LS, in
order to avoid extremely long lines of code)

Moreover, general patterns of how these features can be described
and implemented, were found and analyzed. Parsers for three dif-
ferent LSLs – small subsets of the existing languages Python and

occam as well as a new language called NEWLINE that can be used
to specify layout-sensitive grammars – with said features were im-
plemented by extending already existing tools for parsing context-
free languages. While implementing those parsers required some
specificity for each implementation, it is believed that the develop-
ment of an easy-to-use tool for parsing LSLs is indeed possible. It
remains open however, how versatile such a tool can be, since only
small subsets of languages have been examined. In particular, more
complex grammars with many different kinds of layout-sensitive
features, and where single tokens are assigned many different roles
in solving the context-sensitivity, will need to deal with a high de-
gree of interdependencies which could complicate the implementa-
tion considerably.

6. Related work
As mentioned in the introduction, there has been some important
work on layout-sensitive parsing in recent years. In his paper,
Adams proposes an extension to CFGs that can express layout-
rules such as the offside rule and does some theoretical work on
deriving algorithms for layout-sensitive generalized LR (GLR) and
LR(k) parsing [14]. Afroozeh et al. develop a framework dealing
with indentation-sensitivity among other things on the basis of a
generalized LL parsing algorithm [4]. In their work, Brunauer and
Mühlbacher show that use of indentation for determining nesting
level cannot be described by a CFG and moreover also present a
way of extending CFGs to handle indentation-sensitivity and in-
troduce a method to build an efficient LL recursive descent parser
from it [5].
A very visual approach was taken by Erdweg et al. They propose
a theoretical generalization of block-structures via delimiting poly-
gons and the layout-conditions these polygons adhere to. Further-
more, they use generalized parsing techniques to handle the parsing
of indentation-sensitive syntax and develop a framework to allow
users to specify such a layout-sensitive grammar [6].

7. Future work and concluding discussion
Layout-sensitivity is not a recent concept and is currently used in
several languages. Moreover, there are legitimate reasons for using
LS. Still, writing parsers for such languages is much more work-
intensive than implementing parsers for languages based on CFGs.
In this research a first step has been taken towards the goal of sim-
plifying the development of LSLs. By building parsers for three
different languages (NEWLINE and subsets of Python and occam)
using existing scanner- and parser-generators and interposing a
preprocessor to decorate the token stream, case-to-case solutions
could be implemented. Furthermore, the research showed that cer-
tain parts of the code could be factored out and reused in all three
cases.
Future work building on this research specifically would entail
finding a general solution for building LSLs using the decorator-
approach and, if possible, developing a preprocessor-generator.
Ideally, such a tool would take a layout-sensitive language-specification
as input (for example written in the NEWLINE-syntax) and gener-
ate (i) the according scanner specification (e.g. for JFlex), (ii) the
preprocessor, and (iii) the appropriate parser specification (e.g. for
Beaver).
While researching the topic of LS, the question whether a layout-
sensitive syntax is even desirable and worth the effort, was raised
at several occasions. In the end it is important to consider that there
are in fact several prominent examples of LSLs currently in use.
Thus, the ongoing interest in LS alone makes it worthwhile to fa-
cilitate the development of languages using LS. Moreover, research
in the direction of context-sensitive-grammars is worth something



in itself. It is possible that new concepts can be derived, further-
ing parsing in its entirety. One might compare it to research into
methods for generalized parsing, where an everyday user might
find only limited applicability, whereas many applications can be
derived in more advanced settings.

References
[1] Python Software Foundation. The python language

reference, 2012. URL
https://docs.python.org/3.5/reference/. Retrieved
on January 1, 2016.

[2] Geoff Barrett. occam 3 reference manual, 1992. URL http:
//wotug.org/occam/documentation/oc3refman.pdf.
Retrieved on January 1, 2016.

[3] Simon Marlow. Haskell 2010 language report, 2010. URL
https:
//www.haskell.org/onlinereport/haskell2010/.
Retrieved on January 1, 2016.

[4] Ali Afroozeh and Anastasia Izmaylova. One parser to rule
them all. In 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and
Software - Onward! 2015. Association for Computing
Machinery (ACM), 2015. URL
http://dx.doi.org/10.1145/2814228.2814242.

[5] Leonhard Brunauer and Bernhard Mühlbacher. Indentation
sensitive languages, July 2006. URL
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.136.2933&rep=rep1&type=pdf. Retrieved
on January 9, 2016. Unpublished manuscript.

[6] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and
Klaus Ostermann. Layout-sensitive generalized parsing. In
Software Language Engineering, 5th International
Conference, SLE 2012, Dresden, Germany, September 26-28,
2012, Revised Selected Papers, pages 244–263, 2012. . URL
http:
//dx.doi.org/10.1007/978-3-642-36089-3_14.

[7] Daan Leijen. Parsec a fast combinator parser. University of
Utrecht, Dept.of Computer Science, Utrecht, The
Netherlands, October 2001.

[8] John Gruber. Markdown. URL
https://daringfireball.net/projects/markdown/.
Retrieved on January 9, 2016.

[9] Ralph Johnson Erich Gamma, Richard Helm and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional,
1994. ISBN 0-201-63361-2.

[10] Steve Rowe Gerwin Klein and Régis Décamps. JFlex User’s
Manual, 2015. URL http://jflex.de/manual.html.
Retrieved on January 9, 2016.

[11] Beaver - a LALR Parser Generator. URL
http://beaver.sourceforge.net/index.html.
Retrieved on January 9, 2016.

[12] Moritz Kobler. Layout-sensitive parsing using jflex and
beaver, 2016. URL https://bitbucket.org/edan70/
2015-layout-sensitive-parsing. Retrieved on January
11, 2016.

[13] Michael D. Adams and Ömer S. Ağacan.
Indentation-sensitive Parsing for Parsec. In Proceedings of
the 2014 ACM SIGPLAN symposium on Haskell - Haskell 14.

Association for Computing Machinery (ACM), 2014. URL
http://dx.doi.org/10.1145/2633357.2633369.

[14] Michael D. Adams. Principle parsing for
indentation-sensitive languages. In Proceedings of the 40th
annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL 13. Association for
Computing Machinery (ACM), 2013. URL
http://dx.doi.org/10.1145/2429069.2429129.

https://docs.python.org/3.5/reference/
http://wotug.org/occam/documentation/oc3refman.pdf
http://wotug.org/occam/documentation/oc3refman.pdf
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
http://dx.doi.org/10.1145/2814228.2814242
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2933&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2933&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-642-36089-3_14
http://dx.doi.org/10.1007/978-3-642-36089-3_14
https://daringfireball.net/projects/markdown/
http://jflex.de/manual.html
http://beaver.sourceforge.net/index.html
https://bitbucket.org/edan70/2015-layout-sensitive-parsing
https://bitbucket.org/edan70/2015-layout-sensitive-parsing
http://dx.doi.org/10.1145/2633357.2633369
http://dx.doi.org/10.1145/2429069.2429129

	Introduction
	Background
	Layout-sensitivity
	Existing approaches to parsing LSLs

	Implementation of layout-sensitive parsing
	Languages
	Insertion of relevant tokens
	Practical considerations

	Qualitative evaluation
	Generalizability
	Difficulties encountered

	Results
	Related work
	Future work and concluding discussion

