
Xtext language-based editor
Project in Computer Science - EDAN70

January 25, 2016

Mikael Johnsson
D12, Lund University, Sweden

dat12mj2@student.lu.se

Alexander Olsson
D12, Lund University, Sweden

dat12aol@student.lu.se

Abstract
How easy is it to make an Eclipse like interactive editor for a
DSL, Domain Specific Language, using Xtext? How simple is it to
make syntax validation analysis using Xtext and how does that help
the user to learn and write program for the language. This report
also look at the editor functions, like open new domain specific
editor windows and create an I/O console that is done using other
frameworks.

1. Introduction
Domain Specific Languages (DSLs) makes it possible to focus on a
particular problem domain and make development in that area more
efficient, fast and easier that when a general purpose language is
used. It exist plenty of different tools to make it easier to develop
DSLs[1]. We have worked with Xtext to make an interactive editor
for the a C-like language called SimpliC. An interactive editor is an
editor that, for example, helps the developer by giving suggestions
and validates the written code and reports problems during writing.

Xtext is a scalable framework for both developing a DSL as well
as creating an interactive editor for the language. When starting a
new project with Xtext, it gives the developer some starting stubs
and example code which can be altered to make it easier to get
going. When creating the model for the DSL in Xtext an Extended
Backus-Naur Form[2] like grammar is used.

This report will cover how it is to work with Xtext, as well as
similarities and differences to other frameworks. It also include an
evaluation of the Xtext framework where we compare Xtext with
JastAdd2, Beaver and JFlex. These specific languages were used to
implement the same functionality of the SimpliC language as Xtext
and therefore used in the evaluation. The evaluation compares lines
of code and the number of words used in the different languages.
There is also a section covering how it is to work in Xtext e.g. how
to do type analysis, name analysis, scoping , interpreting, quick-
fixes and context assist.

2. SimpliC
SimpliC is a language that implements a small subset of the func-
tionalities of C and Java. SimpliC requires all source code to be
in one file and supports only if, while, function calls as constructs
for controlling the control flow. The variables and expressions are
statically typed with no type inference and may be of boolean or
int type. Statically typed variables means that each variable has to
be given a type when it is defined. Functions may be of void type
returning nothing or int type returning an integer value.

The structure of SimpliC is that a program is composed of functions
that are composed of statements. All programs have access to the
two predefined functions read and print. There are no global vari-
ables. The types of statements that are included are assignments,
blocks, declarations, if, while, return and call. Many of the types of
statements may take one or several values that are expressions. The
program starts with the execution of the function named ”main”
with no arguments that must exist in a valid program.

Expressions are any mathematical expression containing num-
bers,variables and the following operators (+, -, *, /, %, ==, !=,
>=, <=, >, <). The presented example in 1 is the code given dur-
ing the course EDAN65 to introduce the language and it presents
all the aspects of SimpliC[3].

In our implementation in Xtext some small extensions to the lan-
guage was done, for example allowing global variables and the
interpreter to use a breakpoint keyword ”DEBUG” for stepwise ex-
ecution and debugging purposes. During our Xtext implementation
we also made the extension to allowing functions and variables
to be of boolean type and the use of boolean literals True, False.
Float variables has also been added and as a consequence the printf
function has been added that writes out in float format. The print
functions are special in that it is the only method that takes a value
of any type and print out in a specific format.

3. Xtext
Xtext is a framework for both developing a DSL, with the func-
tionality for validating syntax and interpreting but also the ca-
pacity for making a helpful interactive editor for the language.
Xtext use EMF, Eclipse Modeling Framework, for representing
it’s data structures and abstract syntax tree (AST) model an ECore
model[4, 5]. This is to allow Xtext to be use together with other
tools using also using EMF.

When constructing a DLS with Xtext an Extended BackusNaur
Form (EBNF)-like grammar language is used to set-up the lan-
guage.The use of EBNF means that easy use of optional and repe-
tition is supported. Xtext uses it’s own generator to create a parser,
an AST-meta model as well as start a full-featured Eclipse Text
Editor where programs using the DSL can be implemented[6, 7].

When implementing a project, Xtext allows developers to extend
existing grammars that can serve as starting ground for a new lan-
guages. By extending the included grammar xtext.common.Terminals
you get predefined terminals for integers, comments and identifiers
defined like in Java. By using Xbase, that is an implementation of

i n t gcd1 (i n t a , i n t b) {
w h i l e (a != b) {

i f (a > b) {
a = a − b ;

} e l s e {
b = b − a ;

}
}
r e t u r n a ;

}
i n t gcd2 (i n t a , i n t b) {

i f (b == 0) {
r e t u r n a ;

}
r e t u r n gcd2 (b , a % b) ;

}

i n t main () {
i n t a ;
i n t b ;
a = 1 0 ;
b = 2 ;
/∗ T e s t two d i f f e r e n t i m p l e m e n t a t i o n s o f GCD
∗ a l g o r i t h m s and p r i n t t h e r e s u l t .
∗ The r e s u l t s s h o u l d be e q u a l p r o v i d e d t h a t
∗ bo th i n p u t s a r e p o s i t i v e .
∗ /
a = r e a d () ;
b = r e a d () ;
p r i n t (gcd1 (a , b)) ;
p r i n t (gcd2 (a , b)) ;
i n t d i f f = gcd1 (a , b) − gcd2 (a , b) ;
p r i n t (d i f f) ;
r e t u r n 0 ;

}

Figure 1. Example program in the SimpliC language used to introduce the language during EDAN65

the complete javatype system, as the basis for your DSL you get
access to a language model supporting all java types that gives you
access to additional tools for development for the JVM.

Xtext is also scalable and makes it possible to customize every
aspect in simple ways to form full programming language imple-
mentations.

Many products, both internal and external which is based on Xtext,
have been implemented by companies like Google, IBM, BMW
and several others[8].

3.1 Similar workbenches to Xtext
There are several similar language workbenches compared to
Xtext, e.g. Spoofax.

Spoofax is a language workbench which is bound to Eclipse since
it’s built on top of the Eclipse platform. Unlike Xtext which can
easily be downloaded for the Eclipse platform but isn’t bound to
it, since it can be run on any JVM independently of the Eclipse
IDE[1, 4]. Xtext is also released in a version for use on the IntelliJ
IDEA platform.

Both Xtext and Spoofax uses a text based approach on developing
DSLs. As well as Xtext, Spoofax offers tools to define grammars.
One part that’s different with Spoofax compared with Xtext is that

in Spoofax there’s no need to run multiple instances of Eclipse at
the same time. This makes it more smooth to debug errors and get
feedback. Since in Xtext, when it’s time to test the DSL an extra
application of Eclipse is booted.

It’s easier to create an Eclipse plug-in for the final language with
Spoofax than Xtext since Spoofax uses the Eclipse IDE Meta-
tooling Platform, IMP.

Similarities between Xtext and other frameworks can be viewed
in Figure 2.

4. Working with Xtext
The first thing that needs to be done when implementing a DSL in
Xtext is specifying the languages syntax grammar.

4.1 Designing Grammar
Xtext uses a high level grammar supporting all EBNF constructs,
meaning it allows the use of optionals, alternatives, list and arbi-
trary repetition for DSL parser specification. The constituent termi-
nals and non terminals in the parser rules can be named. The Xtext
grammar joins both the steps of terminal parsing using regex and
constructing an AST with a context grammar[7].

The basic syntax, use of +,*,?,|, closely resembles standard regex

Figure 2. A table describing similarities between Xtext and other
frameworks, full circle is equal to full support, half filled circle is
equal to limited/partial support.

notation. This make it very easy for people familiar with regex to
write a specification for a language. Xtext syntax grammar lan-
guage however have many functionalities in addition to token pars-
ing and can directly specify the abstract grammar model for the
language.

Rules can have ”returns” and the ”{Rule name}” instantiation
specifiers that together determine what sort of node a rule should be
generated and if it need to appear in the AST model. The grammar
support several other actions for shaping the AST beyond these.
For example writing Argument returns Decl: means that when the
rule ”Argument” is parsed a node in the AST of type ”Decl” should
be created.

Giving a node a named attribute is a third way to shape the AST
since doing so implicitly make the rule an actual node unless
changed by a ”returns” declaration. The Special node attribute
”name” informs the model that a node type should be referable
and is the referable identifier.

In Figure 3 a small part of our grammar is shown displaying many
of the features for the Xtext language. In the rule ”Assign” the
name attribute is written as name=[Decl] meaning that the name
attribute should refer to a ”Decl” node and must be the name of a
decl node.

The recommended parser used with Xtext, Antlr(ANother-Tool-
for-Language-Recognition), is a LL(*) parser[9]. Since LL(k)
parsers can’t handle left recursion the user is forced to write more
rules or use more advanced rules using repetitions in some situa-
tions when a LR parser would have needed less rules and less work.
Antlr has however the option to use backtracking for solving com-
mon prefix but it costs some performance. Apart from removing
left recursion it’s easy to implement any EBNF grammar[4, 7].

The only time we had to think how we implemented the gram-
mar was for the expressions but there was simple ways around
the problem. The use of so called syntactic predicates can tell the

Figure 3. Constructing the language syntax using Xtext

parser what to do in certain situation like the dangling else prob-
lem. A syntactic predicate tells the parser to use the rule alternative
that contains it when it encounters a rule that has one in atleast one
of its alternatives and can match the the token following the =>
. The parser must then use that alternative before any of the other
alternatives is attempted [10, 11].This prioritizes that alternative
over others and is a way to avoid problem with common prefix or
identical syntax. A predicate => in a rule like if (cond) stmt* (=¿
else stmt*) tells the parser that we want the innermost if statement
to try an match a else token in the case of nested if statements. In
the SimpliC language this is not a problem since the conditional
actions are encapsulated by the rule for a block statement that re-
moves the syntactical ambiguity.

In our case we use syntactic predication for telling Antlr to match
greedily when parsing the function arguments in function declara-
tions and in function calls without allowing dangling commas.

Another example is that we use Argument returns Decl : =>
type=Type name=ID; where the predicate => allows the parser
to prioritize the argument rule over a general Decl. Antlr would
otherwise complain that both a argument and a unassigned variable
declaration have the same pattern. The predicate resolves this con-
flict of multiple parser alternatives being able to consume the same
pattern. A simple alternative fix with out the predicate is placing
the ; token in the declaration rule instead of at the statement rule.
The two conflict rules would then have different syntax and the
problem would disappear.

Developing an editor for a C like language, like the SimpliC lan-
guage, is in several aspects very easy because the normal modules
for scoping, referencing essentially works as wanted per default.
We made some extensions to SimpliC like extending the type sys-
tem to using bool, int, float so we could test type analysis more
extensively.

4.2 End User Assisting editor functions
From start in the default Xtext editor, after the model has been
specified, are a lot of functions presents. The editor provides real
time error messages for parsing errors, write suggestion based on
the rules and does semantic cross referencing possibly needing a
different scoping implementation[12, 13]. The outline view show
one node for every node in the model of current file except for
predefined terminals and nodes with the ”name” attribute the labels
will only show ”<nnamed>”. The default name scope is a project
global scope but SimpliC works on single file and also have re-
stricted visibility inside functions and blocks and uses shadowing
like in C or Java. This needs to be implemented manually.

Language specific validation, quickfixes, tooltips, descriptions and
labels for the model outline is not done but stubs for each of these

functionalities has been generated, by the Xtext project templete, in
the workspace. Figure 5 shows the different catagories of stubs that
xtext generates. All of these functions are implemented in a simi-
lar way which is to specify a set of functions / checks that should
be run on all nodes in the model of each type that needs some
specialized behavior. There are only some minor differeneces in
that for validations and quickfixes the keywords @check and @fix
respectively are use to denote the functions that the editor should
run on changes. Labels for the outline model and the tool tip de-
scriptions, displayed when hovering over the code representing the
model node, are written using a ”text(Nodetype)” function for each
node returning the text to display.

The functions could be written in standard Java or in Xtext with
the included Xtend language that is a dialect of Java that can sim-
plify the work.

Figure 4. Constructing the languages syntax using Xtext

Xtend and Java are very similar but Xtend contains several im-
provements that decreases the amount of code that needs to be
written. This is due to that Xtend both type infer and uses im-
plicit parentheses for function calls and several new features and
keywords[14, 15]. Java and Xtend is totally interoperable and most
code easily be converted between the two. An automatic converter
is included for translating Java to Xtend .

Figure 5. All Xtext framework stub categories for various editor
and DSL functions

4.3 Testing
Xtext also sets up a plugin for running JUnit tests on the model
and provides some functions for parsing an AST from text while
counting the number of syntax errors. This means that you get
syntax validating form the start without any coding. Once you have
written some validation test in your language validator these can be
run by the framework in the JUnit tests.

5. Extensions to the Xtext editor
There are some aspects that are outside the scope of Xtext that we
wanted to have for our editor. Xtext project wizard gives you code
for making and running a compiler that is run every time a file is
saved by we also wanted to run a interpreter and display the output
in the console in a easy way. As far as we can determine after read-
ing various tutorials and the documentations on Xtext’s homepage
is that this functionality is not part of the scope of Xtext and we
therefore had to do some work with the Eclipse framework. We
needed to create a new type of console for our editor since the Java
console is not available[16]. We wrote the Interpreter using Java
and then connected to the GUI by adding new Eclipse extensions.
In the Figure 6 we show how the IDE environment looks like after
writing and executing a small example for calculating Fibonacci
numbers in the our SimpliC console.

Fortunately for most of the extensions we need, like adding buttons
and views, Eclipse have good template wizards that immediately
gives working skeleton code. In these cases we only had to add the
actual actions of the button or the view.

Adding a console and a drop down option when selecting a file
was harder since Eclipse had no complete template for it, which re-
quired us to look up some examples and tutorials. The problem for
us was that you don’t have access to write to the standard Java con-
sole in the new application since the standard output data stream
is associated with the Eclipse environment that launched the Xtext
editor environment. We also do not interpret our programs in new
JVMs.

Finally we followed the Eclipse template for making a standalone
Eclipse application for Eclipse along with the alternative of export-
ing the finished editor in the form of eclipse plugins that can be
installed locally or from a install website.

6. Evaluation
We have firstly compared the code and work methodology of work-
ing with Xtext with the result of using the tool combination Jas-
tAdd2, Beaver and JFlex since we have implemented the SimpliC
language using all languages.

Our conclusion when it comes to syntax specification is that the
quantity of rules maybe slightly larger for Xtext’s model parsing
due to that Antlr is LL(*) compared to Beaver that is an LR parser.
In the case of our language the difference is minimal and the only
real difference is in rules for the expressions.

The Xtext specification however does much more than the spec-
ification for Beaver, JFlex or JustAdd. The Xtext specification does
all 3 generation steps at once and each rule can be written much
more compact using less number of words since there is no need to
write node construction actions passing attributes to AST node con-
structors and only one specification is needed. Beaver is the worst
in readability and uses the most words since Beaver have to define
the node type of rules separate from the rule , doesn’t support list
attribute but these need extra rules. Beaver needs to both specify
the terminals in the parsing rules,name them and then pass the to
a constructor.[17] This creates a write redundancy since all names
are written at least twice and unnecessary writing like ”return new
...”.

The Xtext grammar both support more constructs that simplify
the grammar and is also shorter and according to us more readable.
Table 6 which is shown in Figure 7, show how much code and how
many lines that we needed to specify the language.

Figure 6. Simplic environment in Eclipse showing the text editor,console,call graph view and outline after running a example calculating
fibonacci numbers

In the following table aspects between the two ways of design a
DSL is compared. Extensions that we have made to SimpliC this

time is not included in code amount evaluations.
Metric Xtext JastAdd & co
Syntax specification

181 words
211 words

Grammar specification 529 words
AST specification 136 words

Syntax specification
114 LOC

76 LOC
Grammar specification 162 LOC
AST specification 39 LOC

Rules in Grammar 28 st 34 st (26 st*)
Name analysis 763 words 461 words
Reachability analysis 188 words 287 words
Type analysis 623 words 228 words
How easy is it to make Grammar? 4 2
How easy is it to make validation? 3 4
How easy is it to make a interpreter? 3 4

* if optimized similarly to the Xtext version

Figure 7. Comparative measurements for Xtext vs JFlex, Beaver
and JastAdd

The various type of analysis of the AST is done differently with
Xtext compared to JastAdd since JastAdd works with RAG (refer-
ences attribute grammar) that are not supported in Xtend or Java.
Analysis is done using a paradigm resembling the visitor pattern or
logic heavy methods executing on top nodes checking there con-
stituents. As a result interpreting and much of the analysis is not as
readable as with the JustAdd implementations.

Xtend is a improvement over Java since it is more compact and
the keyword ’dispatch’ can hide much of the type casting to spe-
cialized types that needs to be done using plain Java. The ’dispatch’
keyword creates a method that does multiple dispatch for the func-
tion. Multiple dispatch is selecting a specific function/behavior
depending on the type of the input. Along with the Eclipse plugins
included for Eclipse are a functionality for converting Java code to
Xtend so its not much difference and performances wise similar.

7. Conclusions and future work
Xtext is an easy to use framework and you quickly get a usable
editor for simple development. The grammar language enables the
language rules to be written short and very readable.

We implemented the SimpliC language with syntactic and se-
mantic validations. We didn’t implement an advanced debugger
like the one included with Java to complete a full IDE with inter-
preter,editor and debugger. In our implementation the only debug
capability is with the program statement ”DEBUG;” that results
in displaying current variable values. A more advanced debugger
would have more functionality and allow variable editing during
breakpoints like the Java debugger. The Java debugger also have
associated views in the IDE. If we had taken the time to learn and

work with Xbase and the XbaseInterpreter we might had been able
to use the existing debug functionality in the Java debugger for
Eclipse.

SimpliC is an very simple language and similar to standard general
purpose languages and now when we have had some experience
with Xtext we could have implemented a more useful and power-
ful language. Some Editor features is not implemented. We didn’t
write many code templates and we could have written even more
validation checks, writing style rules. Syntax highlighting meaning
the use of color to highlight important elements in the editor could
have been extended and optimized. Auto formatting could have be
fully implemented instead of only limited block indentation.

When coding for a larger more complex language it would be
important to do more automatic testing with JUnit. Xtext prepares
a plugin for running language tests but we haven’t really used it be-
cause our language is so simple and Xtext so modular that manual
testing of changed language aspects can be done quickly. During
continued development more active writing of test would be useful.
Most of our test cases were added at the end of the development
when the editor was done.

A lot more could be done for the standalone Eclipse version of
the IDE where a suitable intro page and help manuals could be
created. A full dot format like actual graph for reachability could
have been implemented instead of only a table view. This could be
done using some graphical framework also using EMF.

The code analyzing could be optimized and extended by also using
the tool JavaRAG that would allow the use of RAG for java based
AST models including EMFs Ecore model used by Xtext [18]. That
would allow some types of checks to be implemented more easily
and efficient.

Figure 8. A short program failing a large subset of all validation
tests we have written

References
[1] Leonard Elezi, Spoofax vs Xtext, Last edited:

20 December 2013, Retrieved: 8 January 2016,
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/201314/projects/Leonard.Elezi/report/reading report.pdf

[2] Wikipedia, Extended BackusNaur Form, Last
edited: 2 January 2016, Retrieved: 8 January 2016,
https://en.wikipedia.org/wiki/Extended Backus%E2%80%93Naur Form

[3] Grel Hedin, EDAN65 - Compilers, Last edited: 6 November 2015,
Retrieved: 8 January 2016, http://cs.lth.se/edan65

[4] Eclipse, LANGUAGE ENGINEERING FOR EVERYONE!, Retrieved:
8 January 2016, https://eclipse.org/Xtext/ 2015-11-09

[5] Eclipse, Eclipse Modeling Framework (EMF), Retrieved: 8 January
2016, http://www.eclipse.org/modeling/emf/

[6] TechWars, Xtext, Retrieved: 8 January 2016,
http://www.techwars.io/tools/xtext/

[7] Jianan Yue, Transition from EBNF to Xtext, Retrieved: 6 December
2015 http://ceur-ws.org/Vol-1258/src5.pdf

[8] S. Erdweg et al, The State of the Art in Language Workbenches,
International Conference on Software Language Engineering, SLE
2013, Retrieved: 2 December 2015. https://www.student.informatik.tu-
darmstadt.de/ xx00seba/publications/language-workbench-state.pdf

[9] ANTLR, About The ANTLR Parser Generator, Retrieved: 8 January
2016, http://www.antlr.org/about.html 2015-12-31

[10] Wincent, ANTLR predicates, Last Edited: 7 April 2011, Retrieved: 6
January 2016 https://wincent.com/wiki/ANTLR predicates

[11] Eclipse, Syntactic Predicates, Retrieved: 14 December 2015,
https://eclipse.org/Xtext/documentation/301 grammarlanguage.html#syntactic-
predicates

[12] Efftinge, S., & Vlter, M. (2006, October). oAW xText: A framework
for textual DSLs. In Workshop on Modeling Symposium at Eclipse
Summit (Vol. 32, p. 118). Retrieved: 2 December 2015.

[13] Eysholdt, Moritz, and Heiko Behrens. ”Xtext: implement your
language faster than the quick and dirty way.” Proceedings of the ACM
international conference companion on Object oriented programming
systems languages and applications companion. ACM, 2010.

[14] Eclipse, Xtend, Retrieved: 6 December 2015,
http://www.eclipse.org/xtend/

[15] Eclipse, Java Interoperability, Retrieved: 6 December 2015,
https://eclipse.org/xtend/documentation/201 types.html

[16] Eclipse, FAQ How do I write to the console from a plug-
in?, Last edited: 8 February 2011, Retrieved: 8 January 2016,
http://wiki.eclipse.org/FAQ How do I write to the console from a plug-
in%3F

[17] Beaver SourceForge, Beaver - a LALR Parser Generator, Retrieved: 2
December 2015, http://beaver.sourceforge.net/spec.html

[18] Niklas Fors,Gustav Cedersjö,Görel Hedin,”JavaRAG: a Java library
for reference attribute grammars”, MODULARITY 2015 Proceedings
of the 14th International Conference on Modularity Pages 55-67

