
Type inference in Dart
The Minimal Dart Checker

Malte Johansson
LTH

tfy11mj2@student.lu.se

Mikel Lindholm
LTH

dat12ml1@student.lu.se

Abstract
This report describes the implementation of a type inference tool
called Minimal Dart Checker for the programming language Dart.
The tool helps the programmer to statically check the runtime
compatibility of types for variables, including type inference with
control flow analysis. The tool was built using JastAdd[1].

1. Introduction
Dart is a programming language developed by Google and first
released in late 2013[2]. The language uses a dynamic type system
and optional types[3] but the official tools offers little support in
terms of static type checking. The available static type checker
called Dart static checker[4] is written with the intention to only
provide warnings for type errors the static checker deems serious
and ignore the rest[4]. Our aim is to develop a more strict static
type checker for a subset of Dart that produces warnings for more
cases of type errors.

Our tool called Minimal Dart Checker is based on type infer-
ence. Type inference refers to static deduction of types by analyzing
the source code.

2. Dart
Google’s Language Dart is a programming language that comes
with it’s own Virtual Machine (VM). VM is a managed runtime
platform on the computer. Running code on a VM is simple, be-
cause the emulated machine is a specific computer system which
means the code does not have to be recompiled for each computer,
but rather compiled only once for the emulated machine. In this
sense, a VM is rather versatile, and acts as an abstract layer be-
tween the real machine and the emulated machine.

Dart uses optional and dynamic types, meaning that the pro-
grammer can choose to specify the type of variables and parameters
or leave it as dynamic. Types can be checked at runtime and wrong
type assignments will therefore not cause compilation error. How-
ever, using wrong types may or may not cause runtime error, this is
because Dart is also a weakly typed language and using incorrect
types may not be an error, but rather be intended by the program-
mer. Dart tries to give the programmer the full benefit of dynamic
typing, but offers dynamic type checking in checked mode in the
VM and some static type checking to help avoid incorrect assign-
ment. The effect is that we can, for example, write

int a = 9;
var b = "Foo Bar";
a = b;
print(a);

Output:
$ Foo Bar

In the example above a value of type String is assigned to a
variable with the declared type int. Printing the variable after the
assignment shows that it contains a value of type String.

This may seem unintuitive for a programmer with an object
oriented background because in most object oriented languages
the type of the variable constrains the variable to only hold values
with a compatible type, but the above example is valid for both
compilation and runtime in Dart, if run in production mode in the
Dart VM. This is the power of dynamically typed languages like
Dart[5], Python[6], Common Lisp[7], etc. Variable names are not
bound to an object and a type, but only to the object. Types come
from the objects, not from the variable. This is illustrated in figure
1 below.

Figure 1. The figure illustrates how types work for different lan-
guages. To the left is an illustration of how types are bound to both
the variable and the object, for statically typed languages. This can
be compared to the right illustration, which shows how types are
only bound to the variable for dynamically typed languages.

Therefore we can write as in the code example above, where a
is declared as an integer, but this is disregarded both in compilation
and execution in production mode in the Dart VM because the
objects hold the types and not the variables. Declaring types can
be seen as redundant, because when programs are run in the default
production mode, which does not do any type checking, it treats
all variables as dynamic. Therefore the following code is valid
in production mode, but not in checked mode. The code fails in
checked mode because, as seen in the warning message, a bool
type is assigned to a variable declared as a String.

String i = "Foo Bar";
i = 10 > 5; // raises error in checked mode.

print(i);

Warnings:
$ type ’bool’ is not a subtype of type ’String’ of

’i’.

Output:
$ true

Programs that run in production mode are faster, because the Dart
VM can avoid extra type checking. This can of course lead to prob-
lems if the programmer makes a mistake. Checked mode can then
be used, where the types are actually checked and the VM raises an
error during runtime, terminating the program with an error mes-
sage. Google has developed an in-browser IDE called DartPad[8],
which provides a static type checker. Dart’s Static type checker only
gives warnings when an assignment may lead to an error, much like
lint in C. Dart does not have coercion, i.e. implicit type conversion,
but instead has assignment compatibility which is bidirectional. As-
signing a subtype to a supertype is okay in most statically typed
languages, but Dart’s assignment compatibility is bidirectional and
it is therefore not a problem to assign a super type to a subtype. To
demonstrate this aspect of Dart, consider the following example. In
the example, a supertype Vehicle is assigned to a subtype car and
the subtype Ambulance is assigned to the supertype Vehicle. This
shows that Dart’s assignment compatibility system is bidirectional.

class Vehicle { String sound() => ’*No sound*’; }
class Car extends Vehicle {

String honk() => ’Toot’; }
class Ambulance extends Vehicle {

String siren() => ’Wioo wioo’; }

main(){
Vehicle vehicle = new Vehicle();
Car car = new Car();
Ambulance ambulance = new Ambulance();

car = vehicle;
print(car.sound());

vehicle = ambulance;
print(vehicle.siren());

}

Output:
$ *No sound*
$ Wioo wioo

In many object oriented programming languages like Java[9]
and C# [10], this would not be legal since the compiler cannot
be sure that all functions called on a subtype can be found in the
supertype, e.g. the ’siren()’ method in the class Ambulance. Using
assignment compatibility which supports bidirectional assignments
however, like Dart does, the example is valid. There are limitations
of course, for example calling the method ’honk()’ on an instance
of Vehicle would throw the runtime error ’Uncaught TypeError:
Vehicle.honk$0 is not a function’.

To summarize, DartPad uses a static type checker which is a lot
like a lint tool and warns about some assignments that do not fit
Dart’s assignment compatibility rules. The code can still be valid
and run in production mode in the Dart VM, however it will not
pass in checked mode because then the Dart VM actually does type
checking.

3. Dart type checking limitations
When looking at Dart’s own tool for type checking it can be good
to have an example to see exactly what problems there are and also
what is done to warn about these. Therefore, consider the following
example which we will use in the rest of this section.

Code example 1. Dart example
var v = 8;
bool b = "ABC"; // warning 1
b = v; // warning 2

if(b)
{
v = "ABC";

} else {
v = 1;

}
b = v; // no warning
print(b);

Warnings:
$ A value of type ’String’ cannot be assigned to a

variable of type ’bool’
$ A value of type ’int’ cannot be assigned to a

variable of type ’bool’
Output:
$ ABC

The example starts with a couple of assignments, where the
second and third assignments contain incorrect type assignments.
Assignment two tries to assign a variable of type bool to a value
of type String, which is not allowed. Assignment three assigns a
bool typed variable to a value of type int. This is, like the previous
assignment, not allowed because of the mismatch of types. Next
is an if-else statement. The if branch contains an assignment
to variable v with a value of type String and the else branch
contains an assignment to variable v with a value of type int. The
next assignment is now an incorrect type assignment since b is a
variable of type bool and v is assigned to either a value of type
String or int. The warning messages are generated in real-time
with the Dart static checker in Dartpad.

3.1 Dart Static Checker
3.1.1 Control flow
Consider the code above. Dart’s static checker is able to perform
type checking for the first assignment and is able to infer the type
of the variable v for the second assignment. However, it is unable
to do so after the if statement, where the variable v can have
the type int or String, depending on which branch is executed.
When Dart’s static checker encounters branching, as with the if
statement, it simply drops the warning because it can not infer the
type.

The Dart static checker seems to be unable to provide warnings
when a variable can have multiple types even though the desired
type is not included in the possible types. As in the example above,
where the last assignment tries to give a variable of type bool the
value of a variable which can only have either the type String or
the type int. This is a drawback, since every branch is not checked
it can lead to a hard time finding the bugs or even errors since the
programmer is not warned that a variable may contain a value of an
unexpected type.

3.1.2 Return type checking
One of the bigger limitations for Darts static checker is whenever
a function is called, the return type is never inferred but rather

statically checked. This mean that the below code passes the static
checker, except for the last assignment in the main function, but
when run in Dart VM’s checked mode it will get a runtime error
instantaneously at the second assignment, due to a mismatch in
types. This limitation is a big inconvenience due to the amount of
assignments of function calls a normal program may contain. If the
return values are not checked, then there might be an error at each
assignment of a function call.

main(){
dynamic d = "Foo";
bool b = func(); // no warning
b=d; // warning

}

dynamic func() {
return "Bar";

}

Warnings:
$ A value of type ’String’ cannot be assigned to a

variable of type ’bool’

The problem of inferring types does not seem consistent either.
As we saw in the example code abode, the static checker issues
a warning for the last assignment in the main function. The static
checker seems happy to infer a String type for the variable d.
When using a function call to assign the variable b, of type bool, it
does not care about what the function actually returns, even though
the function is statically declared to return a value with the type
String.

3.2 Dart checked mode
Some type errors can be caught by Dart’s static checker, but as we
saw in the previous section, not all type errors generate warnings.
In fact, the example 1 in section 3, will only get two warnings from
the static checker and will run fine in the Dart VM’s production
mode. Despite being able to compile and execute, the code will
generate a runtime error when run in checked mode. Removing the
error, compiling and then running the code again shows the next
error. This process has to be repeated for all errors in the code
that the checked mode can catch. The process of removing bugs
from a program can be perceived as tedious since only one error
message is shown at a time. The shortened printout below shows
the three errors that the code in the Dart example 1 produces, from
each iteration of the process just described.

Error 1:
Unhandled exception:
type ’String’ is not a subtype of type ’bool’ of

’b’.

Error 2:
Unhandled exception:
type ’int’ is not a subtype of type ’bool’ of ’b

’.

Error 3:
Unhandled exception:
type ’String’ is not a subtype of type ’bool’ of

’b’.

This is expected since Dart VM’s checked mode actually runs
the code and terminates with a warning when a type error occurs.
The disadvantage is that only one branch being executed is tested
and that this requires the code to be compiled and run. This makes
Dart VM’s checked mode a poor choice if the user wants to test the
correctness of different branches with different values.

4. Type inference used by the Minimal Dart
Checker

The Minimal Dart Checker is a type inference tool that uses type
inference to deduce the type of a variable which allows the tool
to perform more accurate type checking. In the example below
no warning is generated since type inference is used on line 2
to deduce that the variable v with the declared type var actually
contains a value of type int.

var v = 1;
int i = v;

Minimal Dart Checker also features control flow type inference
and return type inference, described in section 8.

5. Type systems in other languages
In this section we investigate type systems in other languages.

5.1 Type inference in Haskell
Haskell is a statically typed language which means that all variables
are assigned a type before runtime. This is made possible by type
inference [11] [12]. This is similar to the static type analysis in the
Minimal Dart Checker where it attempts to deduce the type for
each usage of a variable using type inference. The difference is that
a variable in Dart can hold values of different types, which makes it
inadequate to simply deduce the type of a variable once. The Dart
code below shows an example of this.

var v = 1;
int i = v;
v = "string";
String s = v;

In Haskell, functions and values can be type specified which
means that the programmer tells the compiler what types to expect
and use. The compiler checks of course that it can infer the type that
was specified. If no type was specified, the compiler then infers the
types itself if it can be done. Compilation errors occur when the
compiler can not infer the same type as specified, or when value
types and the function arguments do not match.

5.2 Type hinting in Python
Python is a strongly typed language with a dynamic type system[13].
The language, in version 3.5 [14], offers support for type hinting
which is a way for the programmer to hint the type of the value
a variable holds. The hints are not however currently used by the
language to offer any type checking. Third party tools exist that
offers type checking.

This is similar to the optional types in Dart whose purpose is
also to make the code more understandable by allowing the pro-
grammer to include the actual types and thereby declaring intent.
The difference to Dart is that Dart provides both a static checker
and a dynamic checker, both developed and provided by Google,
that makes use of the optional types to provide some type checking.
There exist a third-party IDE for Python, called PyCharm which
supports and helps the programmer with type hinting.[15]

6. Implementation
Minimal Dart Checker uses JFlex[16] which is a scanner gen-
erator to generate a scanner for the subset of Dart that Minimal
Dart Checker supports. The LALR parser generator Beaver[17]
is used to generate a parser for the subset of Dart. JastAdd[1] is
then used to implement an attribute grammar that performs type in-
ference. All three components that make up Minimal Dart Checker
are built using the language Java.

7. Supported language features
The subset of Dart that the Minimal Dart Checker supports includes
the following: Basic Dart statements including assignments, while,
return, if and for. Arithmetic, comparative, logical, shifting, incre-
ment and decrement operator are also supported. Classes are sup-
ported as well as class variables and class functions. Global func-
tions and variables are supported as well. Generics are also sup-
ported but type parameters are limited to being non generic. Op-
tional types are also supported.

8. Tool features
Minimal Dart Checker supports type checking without type infer-
ence. The Dart code below shows an assignment where type check-
ing can be done without the need of type inference.

int i = 1;

It also supports type checking with type inference. The Dart code
below shows an assignment where type inference is required to
investigate the type of v which is required for the type checking.

var v = 1;
...
int i = v; // type inference is required

Minimal Dart Checker supports type inference with control
flow analysis. The Dart code below shows an assignment where
control flow analysis is required to investigate the type of v which
is required for the type checking. The resulting error message is
displayed below the Dart Code.

var v = 1;
v = true;
if(true) {

v = 2.4;
} else {

v = "string";
}
String s = v; //type inference with control flow

analysis is required

Output:
$ Error at line 9: Type ’String’ for variable ’s’

does not match ’[Double, Bool, String] gives
inferred type ’Dynamic’’

Minimal Dart Checker supports type inference with return
types. The Dart code below shows a function with a statically
declared return type that is var. To investigate the actual return
type type inference is required. The resulting message is displayed
below the Dart code.

main() {
String s = function();

}

var function() {
if(true) {

return "ABC";
} else {

return 1;
}

return 1.1;
}

Output:

$ Error at line 1: Type ’String’ for variable ’s’
does not match the types ’[Double, Int, String
] which gives the inferred type ’Dynamic’’

Minimal Dart Checker includes a feature that will suggest return
type. The Dart code below shows a function with a statically de-
clared return type that does not match the return type being inferred
by Minimal Dart Checker. The resulting message is displayed be-
low the Dart code.

var function() {

if(true) {
return "ABC";

}else {
return "DEC";

}
}

Output:
$ Error at line 1: Function have return type ’

Dynamic’ but infers type ’String’

9. Discussion
9.1 Too many warnings
Whenever a tool produces a warning for an error pattern that does
not definitely lead to the code not working there is a chance that
the programmer is aware of the issue and simply chooses to ignore
it[18]. It might even be the case that the code that generated a
warning behaves as intended. Warnings are after all just a analysis
tool complaining that the program does not entirely fulfill every
assumption that the creator of the tool has about how a program
should work. Writing a analysis tool that complains only about the
necessary things is really hard since there are always special cases
that might not be caught.

If many warnings are generated by the tool that the programmer
does not find useful then this may lead to the programmer either
not reading the warnings or disabling them. That is to say that there
is an issue with tools that are too liberal with producing warnings.
Giving too few warnings can result in buggy programs, and too
many can make the programmer not care about the warnings at all
and therefore missing the important warnings that will lead to errors
at runtime.

The right amount of warnings to report is dependent on the tools
purpose and its target audience. What does this mean for a static
type inference tool for an language with optional types?

The target audience for such a tool is clearly those who want
to use the optional types and want warnings when the types are
not followed in an expected way. Therefore we believe that in
the context of this tool there should be warnings whenever an
assignment is made so that the declared type is inconsistent with
its actual type. See an example of this below.

int i = "ABC";

Here i should only be assigned values of type integers and
not of type String.

9.2 Inference with control flow analysis
When it comes to Dart and types, the static checker does not give
many warnings about issues that can lead to errors at runtime. This
is especially true for control flow, where different branches in the
code can lead to different types being assigned to a variable. The
static checker gives up as soon as there is a branching statement,

and cannot infer types anymore. Minimal Dart Checker is designed
to help infer types even in some of these kinds of situations, as we
show below.

Inferring types can be quite ambiguous, and it is often not clear
whether the code should give an error or not. See the example
below.

var v = "Foo Bar";
int i;
if(doSomething())
{

v = 13;
}

if(doSomethingElse())
{

i = v; // Should this generate a warning?
}

The code above shows an example where it is hard for a static
tool to determine the control flow because of lack of information
about the functions doSomething and doSomethingElse. An-
other reason that it is hard to determine the control flow is that it can
depend on input which are not known before execution. In this ex-
ample a type error will only occur if doSomething returns false
and doSomethingElse returns true. This might never happen.

We designed Minimal Dart Checker so that the programmer
should be aware of any assignments of different types to a variable
in the different branches. If the type can be inferred and it is
compatible with the assignment, then the tool should not complain.
However, if the type can not be inferred, or if the type can be
inferred but it is not compatible, then Minimal Dart Checker will
issue a warning, listing the different types of the variable that were
used. This gives the programmer a heads up of all the different
types that were assigned to the variable. That way, the programmers
will know if they made a mistake using the wrong variable in one
of the branches, or if a different type was assigned that was not
intended.

To illustrate the need for the type inference tool consider the
example below. Dart’s static checker will not complain on the
assignment of v to s. However, Dart’s static checker will complain
with the message ’A value of type ’bool’ cannot be assigned to a
variable of type ’String’’ for the assignment of v2 to the variable
s2. This illustrates the need for inferred types in a control flow.

var v = "Foo Bar";
if(true) {
v = true;

} else {
v = 42;

}

String s = v; // No complaint
print(s);

var v2 = true;
String s2 = v2; // Complaint from the static

checker

Output:
$ 42

The error messages from the static checker are not great, it does
not even give one for the first assignment after the ’if’ statement.
In an effort to enlighten the programmer of possible bugs, Min-
imal Dart Checker gives a warning that more than one type has
been assigned to a variable whose inferred type is not compatible.

Minimal Dart Checker gives the programmer the necessary infor-
mation needed: line number, variable name which was assigned,
which type it was declared as, the multiple types that were assigned
to the other variable and of course which type that was inferred.
For example see the Dart code below which contains a control flow
problem that results in the messages displayed below the Dart code.

num n = 1.3;

for(int i = 1; i < 10; i++) {
n= 15;

}

int i = n; // warning 1
var v = 1.3;

if(i < 23) {
v = 21;
v = true;

} else {
v = "Bar";

}

bool b = v; // warning 2

Output:
$ Error at line 7: Type ’Int’ for variable ’i’

does not match the inferred type ’Double’ from
the types [Double, Int]’

$ Error at line 17: Type ’Bool’ for variable ’b’
does not match the inferred type ’Dynamic’
from the types [Double, Bool, String]’

9.3 Our Type System
When constructing the AST it is a common pattern to try to attach
singular nta nodes for the different types to the root. We wish to
do this with the generic classes as well to make code interpretation
and comparison between generic types easier. Since it it possible to
create generic types with an arbitrary amount of object parameters
it is not possible to attach a nta node for every possible type.

The solution is to attach a generic type node for the generic
class to the root. And then on demand attach a new node with the
specific generic params to the generic class node. This is illustrated
in figure 2.

9.3.1 Parsing complications
A problem that emerges when you want to parse a language that
contains both shifting with the syntax (”>>”, ”<<”) and generics
with the syntax ”ClassA < ClassB >” is to handle the case
when the generic parameters are themselves generic.

List<List<List<Dog>>> list;

Since the shift token is made up by two characters it will be
chosen over the greater or lesser token because of longest match
rule in the scanner. This means that depending on the depth of
generic arguments the parser should expect different tokens.

This is solved by creating different parsing rules for each depth
up until depth of 2 where this ceases to be relevant. For a language
with ”<<<” the parser would have to have separate parsing rules
up until depth 3 instead.

10. Evaluation
In this section we aim to evaluate the Minimal Dart Checker
inference tool by means of comparing it to other tools available.

Figure 2. Model of the AST that is build with Minimal Dart
Checker

Two of the most important are of course Dart’s own tools, the
static checker and the VM’s checked mode. Other sections, e.g.
3, have already pointed out some limitations with these two with
some examples. Therefore, the focus in this section is to compare
features and limitations when comparing other tools to Minimal
Dart Checker.

10.1 Comparison with Dart Static Type Checker
As explained in the section 3, the static checker does not work
when a variable can contain values of different types because of
branching code, the static checker stops inferring the type and
leaves the potential bug for the Dart VM’s checked mode. This
lack of type checking on control flow branches can lead to errors,
and the programmer will be none the wiser because the checker
does not display any warnings or errors. Minimal Dart Checker
offers static analysis over more extensive control flow and gives the
programmer a comprehensive set of information in the warning. To
show what a ’comprehensive set of information’ means, take the
example output from Minimal Dart Checker, taken from the last
code example in section 9.2. In this warning, the involved variable
that was assigned is mentioned, the line at which the warning was
generated from, which type was expected and a list of all different
types that was found throughout the branches.

Error at line 7: Type ’Int’ for variable ’i’ does
not match the inferred type ’Double’ from the
types [Double, Int]’

In section 3 we looked closer at how Dart ’infers’ types of
function return values. The static checker seems to neither type
check the declared return type nor the inferred return type for a
function call. However, Minimal Dart Checker infers the type when
the value of a function call is used. Not only that, but it also checks
if the return type can be more strict, e.g. if the returning type is
always a String then a warning is issued where it is suggested that

the return type of the function should be changed to match what is
actually returned, String in this case.

10.2 Comparison with Dart Checked mode
The advantage of Dart’s checked mode is that it does type checks
during runtime with the actual runtime variable states. This is
however also a disadvantage since it only checks one branch with
one set of data and it requires the program to be executed. This
leads to potentially poor coverage of the possible type errors that
can occur with different control and data flow. This is not the case
with Minimal Dart Checker since it collects all the possible types
and checks their correctness.

The termination of the program after each type error means that
only one error can be found at a time with checked mode. This is
not the case with Minimal Dart Checker since it works at a static
level and can find all type errors without terminating.

The performance of running a program in checked mode is
based on the performance of the program. Searching for errors at
the end of a program with long execution times will at the very least
take as much time as the execution of the program. This problem is
also made more severe since only one error can be found at a time.

Minimal Dart Checker does not have this problem because it is
based on static analysis.

10.3 Automatic test suite
With Minimal Dart Checker comes an automatic test suite with 23
test. Nine of these test are focused on parsing the Dart subset and
14 test are focused on type checking.

11. Conclusion
We have found that Minimal Dart Checker is able to produce warn-
ings for error patterns that neither Dart’s Static Checker nor Dart’s
Checked mode can generate warnings for. These error patterns
are connected to type checking for optionally typed variables and
therefore there is a reason to use Minimal Dart Checker for pro-
grammers with the intent to enforce type checking. The limitation
of the Minimal Dart Checker is that it only supports a subset of the
language and that it does not include Darts official libraries. These
two limitation have a large negative impact on the usability of Min-
imal Dart Checker in the industry since larger Dart projects are
likely to make use of Darts official libraries and language aspects
not supported by the tool.

References
[1] “Jastadd official homepage.” URL:http://jastadd.org/web/. re-

trieved 2016-12-15.

[2] S. Ladd, “Dart news & updates: Dart 1.0: A stable sdk for struc-
tured web apps.” URL:http://news.dartlang.org/2013/11/
dart-10-stable-sdk-for-structured-web.html, 2013. re-
trieved 2015-11-30.

[3] K. Walrath and S. Ladd, Dart: Up and running. O’Reilly Media, Inc,
2012.

[4] “Optional types in dart.” URL:https://www.dartlang.org/
articles/optional-types/#the-static-checker. retrieved
2015-11-30.

[5] “Dart official homepage.” URL:https://www.dartlang.org/. re-
trieved 2015-12-16.

[6] “Python official homepage.” URL:https://www.python.org/. re-
trieved 2015-12-16.

[7] “Common lisp official homepage.” URL:https://common-lisp.
net/. retrieved 2015-12-16.

[8] “Dartpad.” URL:https://dartpad.dartlang.org. retrieved
2015-12-16.

http://jastadd.org/web/
http://news.dartlang.org/2013/11/dart-10-stable-sdk-for-structured-web.html
http://news.dartlang.org/2013/11/dart-10-stable-sdk-for-structured-web.html
https://www.dartlang.org/articles/optional-types/#the-static-checker
https://www.dartlang.org/articles/optional-types/#the-static-checker
https://www.dartlang.org/
https://www.python.org/
https://common-lisp.net/
https://common-lisp.net/
https://dartpad.dartlang.org

[9] K. Arnold, J. Gosling, and D. Holmes, The Java programming lan-
guage, Fourth Edition. Addison Wesley Professional, 2005.

[10] “C# official homepage.” URL:https://msdn.microsoft.com/
en-us/library/kx37x362.aspx. retrieved 2015-12-16.

[11] D. Duggan and F. Bent, “Explaining type inference,” Science of Com-
puter Programming, vol. 27, pp. 37–83, Juli 1996.

[12] M. Lipovaca, Learn you a Haskell for great good! No Starch Press,
2011.

[13] “Why is python a dynamic language and also a strongly typed
language - python wiki.” URL:https://wiki.python.org/moin/
Why%20is%20Python%20a%20dynamic%20language%20and%
20also%20a%20strongly%20typed%20language. retrieved
2015-12-01.

[14] “Pep 0484.” URL:https://www.python.org/dev/peps/
pep-0484/. retrieved 2016-12-01.

[15] Q. N. Islam, Mastering PyCharm. Packt Publishing, 2015.
[16] “Jflex official homepage.” URL:http://jflex.de/. retrieved 2016-

12-15.
[17] “Beaver official homepage.” URL:http://beaver.sourceforge.

net/. retrieved 2016-12-15.
[18] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter,

“Tricorder: Building a program analysis ecosystem,” p. 2, May 2015.
International Conference on Software Engineering (ICSE).

https://msdn.microsoft.com/en-us/library/kx37x362.aspx
https://msdn.microsoft.com/en-us/library/kx37x362.aspx
https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language
https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language
https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
http://jflex.de/
http://beaver.sourceforge.net/
http://beaver.sourceforge.net/

	Introduction
	Dart
	Dart type checking limitations
	Dart Static Checker
	Control flow
	Return type checking

	Dart checked mode

	Type inference used by the Minimal Dart Checker
	Type systems in other languages
	Type inference in Haskell
	Type hinting in Python

	Implementation
	Supported language features
	Tool features
	Discussion
	Too many warnings
	Inference with control flow analysis
	Our Type System
	Parsing complications

	Evaluation
	Comparison with Dart Static Type Checker
	Comparison with Dart Checked mode
	Automatic test suite

	Conclusion

