
Bug Detection through Static Analysis
Compiler Project for EDAN70 - Project in Computer Science

at Lund University, Faculty of Technology

Ella Eriksson
D10, Lund Institute of Technology, Sweden

ada10eer@student.lu.se

Zimon Kuhs
D11, Lund Institute of Technology, Sweden

eng08zku@student.lu.se

Abstract
This paper describes a static code analyser for Java code imple-
mented with the ExtendJ compiler and JastAdd, a Reference At-
tribute Grammar (RAG) system for Java. Our tool implements
some of the analyses implemented by another static analysis tool
called ErrorProne. We investigate the efficacy of using aspect-
oriented programming with attribute grammars compared to tradi-
tional Java compiler coding patterns, like visitors, and what advan-
tages and disadvantages compiler implementation with a declara-
tive coding approach might have over a traditional, imperative ap-
proach. We found that our static analysis tool implements compa-
rable analyses using fewer lines of code.

Keywords Attribute Grammars, Bug Detection, ErrorProne, Ex-
tendJ, JastAdd, Static Analysis.

1. Introduction
Static program analysis is used to find bugs or other flaws in source
code by detecting undesired code patterns. Static analysis can help
ensure that the best coding patterns are followed.

In this project we present a static analyser called the eXtended
Analyser for Java Code, or XAJC. XAJC presents warnings and
error messages for Java code. XAJC is an extension to ExtendJ, an
extensible Java compiler. ExtendJ is implemented in JastAdd, an
aspect-oriented system for compiler development using reference
attribute grammars and declarative programming.

We have implemented a subset of the analyses in ErrorProne
[1], and evaluated the difference between ErrorProne and XAJC
both in terms of code complexity and in performance. We also
investigated the difference between constructing a static analyser
using declarative and procedural coding.

Our analyser is not intended to find all bugs in Java code. As
is the case for ErrorProne, XAJC only performs simpler types of
analysis. By only using static approaches to evaluate code, and
thereby not evaluating executed code, the aim is to locate sections
in source code where design patterns [2] are not followed. If best
design patterns are not followed, it might be difficult to modify or
understand, or the program might produce unforeseen errors [3].

2. Background
2.1 Attribute grammars
Attribute grammars have several beneficial properties for compiler
construction. Born in the mid-60s by Donald E. Knuth, attribute
grammars was the start to process program language semantics
without using intricate algorithms [4]. They are declarative, mean-
ing that the code describes what should be done instead of how
it should be done, leaving the details to the compiler. Attribute

grammars are thereJastAdd is aspect-oriented, meaning it supports
cross-cutting concerns that normally cannot be refactored into a
separate module. It also means that it is possible to add new fea-
tures to the code, without changing parts of the old code.

The attributes are evaluated on demand or as needed. This is
also referred to as lazy evaluation. There are two types of attributes;
synthesized attributes and inherited attributes.

JastAdd is a modular system for coding which uses Reference
Attribute Grammars (RAGs). With RAGs it uses attribute gram-
mars, and further allows attributes to have both reference values
and parameters. The inclusion of reference values means that an at-
tribute can be a reference to another node in the AST. If an attribute
has both references and parameters, it allows the node to access in-
formation in a distant AST node. ExtendJ is a compiler written on
JastAdd code.

2.2 ErrorProne Bug Patterns
ErrorProne is an analyser that focuses on catching common made
Java coding mistakes. It is open-source and maintained by Google.
ErrorProne uses the javac compiler while searching for bugs by
extending the JavacCompiler class. The different warnings and er-
rors that ErrorProne catches are called Bug Patterns. It does so by
adding custom error checks after the flow phase of the default com-
piler. It uses BinaryTrees to visit each of the AST nodes. With each
AST node, it runs the intended bug matching code for that node
type. ErrorProne further offer automated code revisions which they
name fix suggestions. We chose six different bug patterns to im-
plement using JastAdd and ExtendJ. The patterns we chose are
ComparisonOutOfRange, DependencyAnnotation, EmptyIf, Class-
Names, StringEquality and WaitNotInLoop. We also chose to uti-
lize the test cases already created by ErrorProne, in order to keep
correctness analysis as consistent as possible for the two tools.

3. Implementation
Our tool is an extension to ExtendJ’s implementation of new Jas-
tAdd aspects (.jrag files). The different analysers to be matched
are dealt with by one JastAdd aspect respectively. The patterns are
matched in the same manner code-wise; a contribution from AST
members of the type or types that are responsible for detecting that
a certain analyser exists. An example can be seen in fig. 1.

A MethodAccess node can contain a contribution attribute
which reports a bug where the wait function is not in a loop
(matched by the attribute waitNotInLoop() in fig. 1).

When a match is found, a contribution from the responsi-
ble node is added to the root AST node Program’s collection
attribute, which can be seen in fig. 2.

Before XAJC terminates, it prints all of the messages in the
collection.

aspect WaitNotInLoop {
MethodAccess contributes waitNotInLoopMessage()

when waitNotInLoop()
to Program.errorMessages() for program();

Figure 1. Contribution to warning messages.

coll Collection<String> Program.errorMessages()
[new LinkedList<String>()]
with add root Program;

syn Collection<String> Program.errorStrings() =
errorMessages();

Figure 2. Example warning message contribution.

The different bug patterns are implemented without dependency
of one another meaning that it would be possible to disable other
pattern detections in order to ”ignore” other errors in search for a
specific type of bug in the code.

3.1 Comparison out of Range
When a comparison is made between two numerical values of
different numeric types there is the possibility that a value will be
compared to another value outside of its numerical range, making
a conditional statement effectively a literal boolean, resulting in an
unnecessary conditional statement or dead code in the then-clause
(fig. 3.

// Bug; Long.MAX_VALUE exceeds Integer.MAX_VALUE.
public boolean compareIntToLong(int a, long x) {

return x > Long.MAX_VALUE;
}

// OK; comparison within Float’s range.
public boolean compareFloatToDouble(float y) {

return y < (double) (Float.MAX_VALUE);
}

Figure 3. Compaing variables with out-of-range literals.

This analysis detects such errors when at least one of the
operands is a constant value1.

The ErrorProne implementation needs to manage the Byte
and Character cases differently, resulting in some extra code.
It should be noted that this implementation only considers equal-
ity and non-equality. It does not cover other kinds of comparisons
but extending the implementation to handle them would be trivial
since the numeric check is already in place. Only inclusion of other
operands (greater than, greater than or equal to...) would be needed.

XAJC’s implementation needs some code to know the number
ranges in addition to its matching logic, but the actual matching
is performed more or less the same. Notably the implementation
would require explicit addition for each new type to be added, but

1 Analysis of a conditional involving two variables can not be done prior to
code execution, and while comparing two literals is suspicious coding, the
error is not pertinent to the Comparison out of Range analysis.

this is unlikely regarding primitive types, since their behaviour is
integral to Java and thus they are rarely modified.

Both implementations need to manage floating point numbers
and integral numbers types differently, having no effective way of
covering comparison expressions in general since each primitive
type needs to be managed explicitly (Float.MAX VALUE) instead
of utilizing a generic field (e.g. ((Numeral) x).MAX VALUE())).

3.2 Dependency Annotation
This analysis detects inconsistencies in the JavaDoc tag
@deprecated and its corresponding declarations. If the declaration
of a class, constructor, field, interface or method is not preceded
by the @Deprecated annotation when the javadoc tag specifies
otherwise, e.g. as presented in fig. 4, an error is reported.

/**
* N.B, method is deprecated.
*
* @deprecated
*/

// Bug; missing @Deprecated annotation as
// specified by the above javadoc.
public boolean method(int x) {...}

Figure 4. JavaDoc tag in comment but not in method annotation.

ErrorProne’s implementation uses a unique visitor for each type,
reducing the required code amount by having the visitor for each
AST class call the same matching method. It uses the bit pat-
tern generated by javac for javadoc comments directly as filtering
method.

The JastAdd implementation follows a similar vein but uses
the collection construct instead of the visitor construct, and filters
javadoc comments with an @deprecated tag using
contains<String>("@deprecated").

3.3 Empty If
If an if-statement has no else clause but has no statements in
the then block it’s highly likely that the programmer has made an
error. If not, it is redundant code, e.g. in fig. 5.

// Bug; redundant conditional statement due to
// empty if-statement.
public boolean emptyIf(int x) {

if (x > 0)
;

return 1;
}

// OK; code performs something.
public int emptyIfWithElse(int x) {

if (x > 2)
;

else
return 3;

return 4;
}

Figure 5. If-statements with empty then-branches.

ErrorProne’s implementation collects if-statements and reports
errors only for those devoid of else-clauses and then-statements.
In the JastAdd implementation empty statements can exist in the
then-clause as long as there is at least one statement which is non-
empty. The reasoning behind this is that while the empty statements
are redundant, the if-statement is in that case not redundant.

3.4 Class Names
The name of the source file should match the name of the top-
level class it contains, for example as illustrated in figure 6, for
the erroneously placed class declaration of class B.

// File A.java
public class A {...}
public class B {...}

Figure 6. Example of a class defined in a file with mismatching
name.

In Java, it is legal [5] to define several top-level classes in the
same file. E.g., a source file with the name A.java could have two
public classes public class A and public class B at the top
level. Such implementation does necessarily cause any problems,
but could if a third class, C requires B, when A is not part of the
current compilation. Then the compiler would search in B.java
for B and find nothing, or another class with the same name. For
the bug pattern ClassNames, a warning is generated for such kinds
of class declarations. In the ErrorProne implementation, the pattern
compare the source file name and names of possible public top-
level classes by using visitors to search through the compilation
units. When comparing the source file names and top-level class
names, instead of searching for when a warning should be issued,
the bug pattern eliminates the instances when the pattern should not
generate a warning. If none of those checks generates a true, the
name of the other top level class is reported.

In our implementation, one aspect is used for checking that in
each ClassDecl node, the name of the source file is compared to
the class declaration name. If the names do not match, the pattern
generates a warning.

3.5 String Equality
A common mistake in Java is to compare strings by using either
== or !=. When such comparison is made the strings are compared
by reference equality (or non-equality) instead of value equality.
When such a comparison is made, as can be seen in fig. 7., the
StringEquality analysis generates a warning.

public boolean compare(String x, String y){
boolean retValue = (x == y);
retValue.toString();
return retvalue;

}

Figure 7. Incorrect string comparison using ==.

The two strings should in this case be compared using the
String class’ .equals() method as in fig. 8.

The implementation of this bug pattern in ErrorProne uses two
public methods and four private methods. This could be the rea-
son why the implementation is verbose. For the two public meth-
ods, matches() returns true if the operand are strictly strings
and matchBinary() searches for the cases where the operands

boolean retValue = x.equals(y);

Figure 8. Correct string comparison using .equals().

are compared by using == or !=. Both methods use vistors on
BinaryTree. The latter method uses all of the private methods and
consists of several if-statements.

With JastAdd it is easier to check if the operands are both
Strings as the AST node implementation has a node EqualityExpr
that is a super class to both EQExpr (==) and NEExpr (!=). Con-
sequently in XAJC, the matching attribute StringEquality only
needs to check if both of its operands are String instances. If both
operands are strings, a warning is generated (fig. 9).

EqualityExpr contributes
invalidStringComparisonMessage()
when invalidStringComparison()
to Program.errorMessages()
for program();

syn boolean EqualityExpr.invalidStringComparison() =
getLeftOperand().type().isString() &&

getRightOperand().type().isString();
}

Figure 9. Using JastAdd to find string comparisons using refer-
ence equality.

3.6 Wait not in Loop
This pattern generates warnings if Object.await() or
Object.wait() is called outside a loop. Although Java does per-
mit such calls, calling wait() like this could cause problems due
to spurious wake ups.

When a set of threads waits for another thread to release a lock
or fulfill some condition, the awaited thread can wake the watching
threads via the method notifyAll(). In that case, the waiting
threads will continue running even though the condition they are
waiting for has not been fulfilled (see fig. 10 for an example).
Hence, they need to re-evaluate the condition, and to ensure that
this happens the waiting threads need to check their repeatedly with
a loop.

ErrorProne’s implementation finds all method accesses for wait-
ing using a field called ”waitMethod”, and a boolean recursive
search method ”inLoop()” as specifications for their matcher ob-
ject.

In XAJC the matching is done equivalently, albeit utilizing a
few equation attributes; a MethodAccess node needs to ask its
parents recursively higher in the AST whether or not they are loops.
If a parent is of a looping type the MethodAccess node is contained
within it.

4. Evaluation
4.1 In-depth comparison of WaitNotInLoop as implemented

in our tool and ErrorProne
ErrorProne’s implementation is done in idiomatic Java following
Google’s Style Guide [6], which means that any division of source
code contains a lot of imports, one for each type used that is
not contained within the same package. JastAdd, which weaves
together the aspect files when building, does not need to do this

\\ Awaited Thread:
boolean condA = false, condB = false;
void run() {

while (true) {
wait(1000);
condA = true;
notifyAll(); // (1).
wait(1000);
condB = true;
notifyAll(); // (2).

}
}

// Waiting thread with loop:
void runGood(Thread master) {

while (!master.condB) { // Condition checked
// until condB
// is true.

wait();
}
performFunction(); // Will be reached

// after (2).
}

// Waiting thread without loop:
void runBad(Thread master) {

if (!master.condB) { // Condition checked
// once.

wait();
}
performFunction(); // Will be reached

// after (1).
}

Figure 10. Correct and incorrect usages of wait().

explicitly. The point is minor but results in a lot more lines of code
compared to our implementation, why imports are ignored when
counting lines of code.

4.1.1 Error reporting
The structure of our implementation utilizes a JastAdd collection
of Strings at a program’s top level, i.e. the Program AST node
(section 3), for error reporting. Each aspect is responsible for the
detection of a particular bug, and contains specification about when
an AST node capable of ”containing” a bug can detect it and add a
message to the top-level collection.

The ”when WaitNotInLoop()” expression means that the er-
ror message returned by waitNotInLoopMessage()will be added
when the boolean returned from the waitNotInLoop() attribute
for a given MethodAccess AST node instance is true. This means
that the waitNotInLoop() method specifies our filtering criteria
with which we look for pattern matches and consequently detect
bugs.

Each of ErrorProne’s bug pattern matcher implementations has
an annotation @BugPattern which specifies information about the
pattern, as given by fig. 11.

The ErrorProne implementation uses a constant String field (fig.
12) for the case where no match was found, and a message template
for producing an error report specifically in regards to a certain ID.

If the AST, for a given Visitor (called state in the implemen-
tation), is currently configured as such that it contains a certain pat-

@BugPattern(name = "WaitNotInLoop",
summary = "Because of spurious wakeups,
Object.wait() and Condition.await() must always
be called in a loop",
category = JDK, severity = WARNING,

maturity = MATURE)

Figure 11. ErrorProne annotation @BugPattern.

private static final String MESSAGE_TEMPLATE =
"Because of spurious wakeups, \%s must always

be called in a loop";

Figure 12. ErrorProne message template.

tern (fig. 13), the matcher matches() method will find the perti-
nent symbol sym, which will be used in the message template.

@Override
public Description matchMethodInvocation(
MethodInvocationTree tree, VisitorState state) {

if (!matcher.matches(tree, state)) {
return Description.NO_MATCH;

}

Description.Builder description =
buildDescription(tree);

MethodSymbol sym = ASTHelpers.getSymbol(tree);
if (sym != null) {
description.setMessage(String.format(

MESSAGE_TEMPLATE, sym));
}

Figure 13. ErrorProne visitor usage.

4.1.2 Matching
In order for our pattern matching to work, it is required that the
”loop” nodes, i.e. the AST nodes generated after parsing a do, for,
or while, can tell whether or not it is a loop to any inquiring child
node. This information is implemented using attribute equations
(fig. 14), and the CompilationUnit2 node can report to every
child, and their children recursively, that they are outside a loop.

eq CompilationUnit.getChild().inLoop() = false;
eq DoStmt.getChild().inLoop() = true;
eq EnhancedForStmt.getChild().inLoop() = true;
eq ForStmt.getChild().inLoop() = true;
eq WhileStmt.getChild().inLoop() = true;

Figure 14. Equation attributes in loop nodes for informing child
nodes whether or not they are within loops.

Equivalently named attributes and equations in JastAdd will
override the ones specified in a higher node, so the inLoop()

2 Representative of a file in a built program.

method will be true for the four type of loop nodes and their
recursive children, but not for any other node.

The bug being sought after is when a method called ”await()”
or ”wait()” is called, statically or not, outside a loop context. The
use of a method generates a MethodAccess node, so we declare
that each such node has to ask its parent nodes recursively whether
or not it is in a loop, as done in fig. 15.

inh boolean MethodAccess.inLoop();

Figure 15. The inherited inLoop() attribute will look in parent
nodes to know whether or not it is in a loop.

This inherited attribute is then investigated for each MethodAccess
node, and when the waitNotInLoop() method (fig. 16) returns
true, we have found a bug pattern.

syn boolean MethodAccess.waitNotInLoop() {
return (name().equals("wait") || name.equals(

"await") && !inLoop();
}

Figure 16. Attribute checking if the MethodAccess node repre-
sents a wait() call and is outside of a loop.

ErrorProne utilizes a Matcher (illustrated in fig. 17), an object
collecting AST nodes dependent on some criteria. In this bug pat-
tern the criteria are that the method should be one of await and
wait, as well as not be part of a loop structure.

private static final Matcher<MethodInvocationTree>
matcher = allOf(waitMethod, not(inLoop()));

Figure 17. ErrorProne’s matcher finding wait()-calls outside of
loops.

This works similarly to JastAdd collections, but instead of nodes
contributing to a collection the matcher itself looks at the tree, a
shift of view point.

4.1.3 Metric Comparison
Counting source lines of code (SLoC) for different implementa-
tions is a non-biased way of producing a comparable metric. The
issue is that it says little, if anything, about the quality of the code
other than maybe telling the analyst that her code might be too long.
It could also be argued that a shorter implementation usually means
a cleaner, simpler one, which can be indicative of the difficulty in
implementation and management of the code.

Counting SLoC for ErrorProne’s and XAJC’s implementations
for the respective bug patterns it is clear that XAJC requires less
code than ErrorProne’s in all cases (fig. 18).

Figure 18. Source lines of code for the two tools.

Especially noteworthy is the case of String Equality; XAJC uses
roughly 15% of the lines that ErrorProne does. On average, XAJC
uses 62% of the code that ErrorProne does.

Another way of analysing source code objectively is to look
more closely at what is actually used in the code, i.e. tokens. A
token denotes any construct that has some form of semantic mean-
ing within the programming language, e.g. a primitive type name, a
for-token, or the usage of a method or variable. The advantage of
this over counting SLoC is that things such as code formatting and
the textual structure of the code is disregarded. Furthermore token
counting avoids taking into consideration project-specific styles,
such as whether or not to always use braces in if-branches regard-
less of whether or not the then- and else-blocks contain state-
ments. It also takes into consideration e.g. long method chains; a
long method chain might contain many tokens but occupy a sin-
gle line only, meaning that it could be considered more complex
than execution-equivalent code spread across multiple line. Indeed,
it is possible for code using more lines to be more navigational and
readable than shorter code.

The general trend here is as evident as when counting SLoC;
XAJC utilizes fewer tokens than ErrorProne does by a significant
margin (see table 19).

Figure 19. Java token count for the two tools.

The aforementioned case of String Equality requires only 6% of
the amount of tokens in ErrorProne, and the average token amount
of XAJC is approximately 22%.

It is important to note the fact that ErrorProne’s implementa-
tions feature attempts at automated code revision, which inflates
code length and token amounts when only considering the actual
pattern matching.

4.2 Using our tool on an existing project
In order to validate the accuracy of XAJC in a real-world environ-
ment, we utilized the open-source Atlassian project JIRA [7], a tool
for management of software development in agile settings. It com-
prises (among other things) 80 Java source code files with a total of
6850 lines in them.

Our tool did not find any matches in the project (table 1), despite
its size.

Table 1. Errors found by XAJC in Atlassian’s JIRA
Bug Pattern Matches Found
Class Names 0
Comparison Out of Range 0
Dependency Annotation 0
Empty If 0
String Equality 0
Wait not in Loop 0

Running XAJC on all of the project files in Linux Ubuntu
3.13.0-65 with the command in fig. 20. has a total execution time
of approximately 9.155s.

time java -jar <jar_file.jar>
$(find testProject -name ’*.java’)

Figure 20. The Unix command used to time XAJC.

However, this execution time includes system delays and time
spent waiting, why we instead look at the real time as specified
by the time command. See fig. 2 for a full listing of the results.

The lack of matches can likely be explained by considering the
fact that Atlassian is comprised of mostly experienced program-
mers using well-developed coding practices and diligent testing to
produce stable and tidy code. As such, it is unlikely that the minor
errors that XAJC matches can be found.

5. Related work
Static program analysis refers to the error checking of code before
or without execution, usually at compile time. When it comes to
code analysis, it can be used for anything from gathering metrics
and data structure analysis to enforcing coding standards. Usually,
static analysis tools are used by developers to check the code and
can serve as an important part of software testing [8].

There are several static analysis bug detection tools available,
such as FindBugs, ClangTidy and DocComments. These tools find
flaws or bugs and sometimes suggests how to fix them. There are
tools available for most popular programming languages, e.g. two
analysers for Java are FindBugs and ErrorProne. Analysers can tar-
get either the source code or object code in order to detect unwanted
patterns in the software. FindBugs analyses Java bytecode [9] and
ErrorProne uses the javac compiler API.

Time type XAJC Time EP Time
Real 2.42388 0.504
User 9.15476 1.20
System 0.37242 0.08

Table 2. Timing results for XAJC and EP run on the JIRA project.

6. Conclusion
Due to the lack of aspect-oriented compiler extensions it is trouble-
some to make substantial comparisons between the two approaches
in general. There is extensive literature on the use of static analy-
sers, but in view of declarative contra procedural it is difficult to
determine whether or not either one is decidedly advantageous for
different aspects. In this report we have shown an example where
the declarative approach for certain bug patterns meant a lot less
code and less complexity in implementation.

Not only when it comes to ease of implementation, but also for
accessibility the declarative approach that JastAdd uses provides a
framework that represents abstract syntax trees in a clear, distin-
guished manner. This is partially due to the fact that it was created
for that purpose specifically whereas Java as a language was de-
signed with a broader perspective.

The amount of code required to build the respective implemen-
tations play importantly into this fact. The Java approach by Error-
Prone requires a lot more lines and Java tokens than XAJC does,
even though it could be argued that for an experienced Java pro-
grammer, the shift in programming style might require a certain
learning period.

References
[1] Errorprone.info. Error Prone. N.p., 2015. Web. 16 Dec. 2015.
[2] E. Gamma, J. Vlissides, R. Johnson, and R. Helm, Design Patterns.

Boston, Addison-Wesley, 1994.
[3] R. C. Martin, Agile Software Development, Principles, Patterns, And

Practices, Prentice Hall, 2003.
[4] D. E. Knuth, Semantics of context-free languages Springer-Verlag,

1968.
[5] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java

language specification, Java SE 8 Edition Upper Saddle River, Addison-
Wesley, 2014.

[6] Google.github.io. Google Java Style. N.p., 2015. Web. 13 Dec. 2015.
[7] JIRA. Atlassian, 2015.
[8] C. Sadowski et al. Tricorder: Building a Program Analysis Ecosystem.

International Conference on Software Engineering, 2015, p598-608, 11p.
Publisher: IEEE.

[9] N. Ayewah et al. Using Static Analysis to Find Bugs. 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering , 2015,
p598-608, 11p. Publisher: IEEE.

