
EDAN70 Compiler Project
CUP parser generator for JastAdd

January 20, 2016

Felix Åkerlund
D11, Faculty of Engineering (LTH), Lund University

felix.akerlund.978@student.lu.se

Ragnar Mellbin
D11, Faculty of Engineering (LTH), Lund University

ragnar.mellbin.498@student.lu.se

Abstract
We have extended a parser specification preprocessor called Jas-
tAddParser to support the Construction of Useful Parsers (CUP)
parser generator as a backend in addition to the Beaver parser gen-
erator, which previously was the only available option.

In the process of implementing CUP support we also modular-
ized the pre-processor to make it easier to support additional gen-
erators in the future. This will make JastAddParser less dependent
on the continued support and development of Beaver. It is also in-
teresting to see how a CUP-generated parser performs compared to
one built by Beaver.

We encountered several difficulties during the processes, but
produced a implementation with partial CUP support.

1. Introduction
Beaver and Construction of Useful Parsers (CUP) are two open
source LALR(1) Java parser generators. A parser generator is a
program that takes a parser specification as input and produces
parser code that implements the specification. The parser code can
then be linked with a scanner to build the first stages of a compiler
that can transform source code into object code. The scanner reads
the source code and divides the character sequence into tokens such
as numbers, variable names, operators, etc. The parser’s task is then
to build a parse tree out of the tokens, which is later used by a code
generator to produce the final code.[6, Chapter 1.2]

JastAddParser is a preprocessor for the Beaver parser spec-
ification, which adds some features to the Beaver specification.
This project aims to add support for generating CUP specifications
to JastAddParser. There are two main motivations for doing this.
Firstly, to make JastAddParser less dependent on Beaver, which has
not seen any updates for a while. Secondly, in the process modular-
ize JastAddParser, to make future modifications of this kind easier
to perform.

2. Background
Parser specifications define the production rules of a programming
language grammar. Specifications are often written in Backus-Naur
Form, a formal notation for context-free grammars.

A context-free grammar is a grammar in which all production
rules consist of a nonterminal symbol breaking down into a number
of nonterminals and/or terminals (tokens). Context-free means that
any such rule can always be applied to a nonterminal symbol
regardless of the symbols preceding the nonterminal.

Extended Backus-Naur Form (EBNF)[11] is an extended vari-
ant of the Backus-Naur Form, with added support for multi-line
rules and shorthand symbols representing repetition, exceptions,
etc. An example can be seen in figure 1. The example features

bit = "0" | "1" ;
nibble = bit , bit , bit , bit ;
bits = bit , { bit } ;
signed-bits = ["-"] , bits ;

Figure 1. A small example of a grammar in EBNF.

<bit> = "0" | "1"
<nibble> = <bit> , <bit> , <bit> , <bit>
<bits> = <bit> | <bit> , <bits>
<signed-bits> = <bits> | "-" , <bits>

Figure 2. The grammar from figure 1, expressed in BNF.

four production rules with a nonterminal on the left side of the as-
signment, and a number of terminals or nonterminals on the right.
Terminal strings are enclosed in quotation marks, a vertical bar rep-
resents ’or’, and commas are for concatenation. Each rule is termi-
nated by a semicolon. Symbols inside square brackets are optional,
whereas curly braces indicate repetition.

All grammars expressed in EBNF can be converted to BNF.
Figure 2 shows how one can convert an EBNF representation with
optionals and repetition to BNF. Nonterminals are enclosed in
angle brackets. No semicolons are needed because a rule is always
represented by a single line.

2.1 JastAddParser
JastAddParser[4] is a pre-processor for Beaver that allows parser
specifications to be split into modules and also uses a slightly differ-
ent syntax. The specification for JastAddParser is built with Beaver
in mind, and thus shares many similarities. Moreover, the imple-
mentation of JastAddParser takes advantage of this by, for example,
storing parts of the specification that do not need transformation as
raw strings internally, and just prints it at the correct location. Jas-
tAddParser uses the meta-compilation system JastAdd2 to generate
an AST class hierarchy.

A JastAddParser specification can be seen in figure 3. The ex-
ample features one terminal of type ’TOKEN’ and two nontermi-
nals, ’list’ and ’list item’. While being very similar to Beaver spec-
ification, it is slightly less verbose. Another noteworthy feature is
that JastAddParser supports both definitions with ”:=” as well as
those with ”=”. The former replaces previous definitions, while the
latter adds on to them.

ExtendJ[8] (previously known as JastAddJ) is an extensible Java
compiler built with JastAddParser. It is not as fast as the standard

TokenList list =
list list_item {: list.add(list_item);

return list; :}
| list_item {: return new TokenList(list_item); :}

;
ListItem list_item =

TOKEN {: return new ListItem(TOKEN); :}
;

Figure 3. A small JastAddParser specification.

javac compiler, but it can be extended to support custom languages
based on Java.

JastAddParser uses a test framework for automated testing.
Each test case for this framework has a separate directory that
contains the test input data, the test parameters and the expected
output of the test case. The test parameters include any flags that
should be passed to JastAddParser and the goal test pass for the test
case. The test passes are related as in figure 4 and works as follows:

JAP PASS
Tests with this pass as goal will pass if JastAddParser success-
fully parses the input file.

JAP ERR OUTPUT
Tests with this goal will pass if JastAddParser fails to parse the
input file.

JAP OUTPUT PASS
Tests with this goal passes if JastAddParser successfully parses
the input file, and the output matches the expected output.

EXEC PASS
Tests with this pass as goal passes if the output from the
JAP OUTPUT PASS can be used to parse the test data with-
out errors.

EXEC OUTPUT PASS
Tests with this goal pass if the output form the JAP OUTPUT PASS
can be used to parse the test data, and the expected AST is gen-
erated.

3. The Beaver parser generator
Beaver[2] is a parser generator for generating LALR(1) parsers
from an EBNF grammar specification. LALR stands for Look-
Ahead Left-to-right, Rightmost derivation and describes how the
parser works to apply the production rules of a language.[7] The
number in the parenthesis indicates the number of lookahead to-
kens, with the most common variant being only one. LALR was
developed as an alternative to the LR(1) parser[10], with the ad-
vantage of a smaller memory requirement at the expense of some
language recognition power. The latest version of Beaver (0.9.11)
was released in December 2012.

The beaver specificaion uses ’%’ before its directives. These are
at the beginning of the specification and specify what terminals and
non-terminals the parser uses, as well as their type and which pro-
duction is the goal/start production. This is followed by the actual
productions. Something to note about Beaver specifications is that
terminal precedences are listed from high to low, and semantic ac-
tions feature a return statement.

A sample Beaver parser specification can be seen in figure 5.
The parser specification is functionally identical to the JastAd-
dParser one in figure 3. Note the similarities, but also the increased
verbosity.

4. CUP parser generator
CUP[3] is another LALR(1) parser generator like Beaver, but uses
a specification syntax similar to the one used by the Yet Another
Compiler-Compiler[9] (YACC) parser generator, which in turn is
similar to BNF. CUP is currently maintained by the Technical
University of Munich and is continually being updated, with the
latest version released in October 2015.

Unlike the Beaver parser generator, CUP does not support list
and optional productions such as ’?’, ’+’ and ’*’. Also, CUP does
not use ’%’ in front of directives, and a non terminal needs to be
declared before it can be set as start/goal production. CUP lists
terminal precedences from low to high, unlike Beaver. For the
semantic actions, the variable ’RESULT’ must always be used.

A sample CUP specification can be seen in figure 6. The speci-
fication describes the same language as the one used in figure 5 and
figure 3. Note the bigger difference in syntax, and that the start rule
needs to be after the declaration of the production used in it.

5. JFlex scanner generator
JFlex[5] is a generator similar to Beaver and CUP, but for generat-
ing the scanner component of a compiler. JFlex is designed specif-
ically to work with CUP, but can be paired with other parser gen-
erators if needed. Beaver equipped with a scanner integration API
to facilitate the use of JFlex and similar tools. JastAddParser uses
JFlex for scanner generation.

6. Implementation
To start off our work, we added a flag to enable CUP generation.
This required us to rewrite the argument handling code, which orig-
inally was not designed to support easy introduction of additional
flags. We chose not to use a library for arguments, since we only
needed simple flags, and implementing it was a relatively easy task.

JastAddParser uses Apache ANT for building and testing. ANT
is tool for automated software building. It is implemented in Java
and runs on the Java platform, and uses xml files to describe the
build task[1]. Initially, we had some difficulties with running the
tests in JastAddParser due to an incorrect path in the build xml file.

JastAddParser, being specifically built around Beaver, only fea-
tured a single aspect for printing parser specifications, named Pret-
tyPrint. Since we would be introducing another aspect for printing
CUP specifications, we renamed the old aspect to BeaverPrint.

We then copied the contents of BeaverPrint to a new aspect,
CUPPrint, to use as a starting point for CUP, and replaced all
the Beaver-specific syntax with its CUP counterpart. Examples of
this includes reordering rules to put the goal/start and precedence
directives last, changing the order of parameters to the non-terminal
directives, changing symbols (such as replacing ”=” with ”::=”)
and replacing ”return x” with ”RESULT = x” in productions. The
order of terminal precedences had to be reversed, as Beaver lists
them from highest to lowest, whereas most other parser generators,
including CUP, do the opposite.

Figure 4. The test passes of the JastAddParser framework

%terminals TOKEN;
%goal list;
%typeof list = "TokenList";
%typeof list_item = "ListItem";
list =

list.list list_item.list_item {: list.add(list_item);
return list; :}

| list_item.list_item {: return new TokenList(list_item); :}
;
list_item =

TOKEN.TOKEN {: return new ListItem(TOKEN); :}
;

Figure 5. A small Beaver parser generator specification.

terminal TOKEN;
non terminal TokenList list;
non terminal ListItem list_item;
start with list;
list ::=

list:list list_item:list_item {: list.add(list_item);
RESULT = list; :}

| list_item:list_item {: RESULT = new TokenList(list_item); :}
;
list_item ::=

TOKEN:TOKEN {: RESULT = new ListItem(TOKEN); :}
;

Figure 6. A small CUP parser generator specification.

When JastAddParser is executed with the ”–cup” flag, it calls
the CUPPrint which writes a CUP parser specification, instead of a
Beaver specification, to a file.

We changed the test framework to run all tests twice: once for
Beaver, and once for CUP, and we created the corresponding files
for checking the test output.

In order to use the generated CUP parser, a scanner is needed.
JFlex is a scanner generator natively supported by both Beaver and
CUP, which is used by the JastAddParser test framework to do
the EXEC PASS and the EXEC OUTPUT PASS. We had troubles
writing JFlex files for generating scanners for the CUP files, and
were not able to succeed within the time frame of this project. This
means that these passes are not supported when testing the CUP
functionality. If one of these passes are the goal of the test it stops
at the JAP OUTPUT PASS for the CUP testing.

7. Evaluation
JastAddParser now has support for generating a CUP specification
in a similar manner to how it generates a Beaver specification. The
code for generating these two specification have a lot in common,
and could surely benefit from some abstractions. This work has
been started in the PrintCommons JastAdd aspect.

We extended the test framework to generate and parse CUP
specifications as well as the Beaver ones for all test cases. This
works for tests that use BNF grammars. We originally planned to
compare the performance of the generated parsers, but we were not
able to construct suitable JFlex scanners for the cup parsers in the
time frame of this project.

During the course of this project we have encountered some
difficulties that all consumed a fair amount of time. At first we
had trouble running the tests, even before we modified any code.
This turned out to be an error in the build file, it did not correctly
point to the source directory. Understanding the existing code has

not always been straightforward, and much time has been spent on
this.

8. Conclusions
The greatest difficulty of implementing CUP support in JastAd-
dParser has been that Beaver supports EBNF grammars, while CUP
does not. This means that there is not a clear translation between a
Beaver specification and a CUP one. This does not mean, how-
ever, that such a translation is impossible. It is possible to express
a EBNF grammar in BNF, but it requires additional productions.

This is something that would require larger changes to the
JastAddParser structure, it is currently not built to add productions
to itself.

JastAddParser now has a new flag −−cup, and when given Jas-
tAddParser generates valid CUP specification if the JastAddParser
specification is in BNF.

Future work could include extending the testing with JFlex
scanners for the generated CUP files, and comparisons between
the parsed trees constructed by CUP and Beaver respectively. A
more advanced task would be to support CUP generation for EBNF
JastAddParser specifications.

References
[1] Apache Ant, . URL http://ant.apache.org/. [Online; accessed

2016-01-02].
[2] Beaver - a LALR Parser Generator, . URL http://beaver.

sourceforge.net/. [Online; accessed 2016-01-04].
[3] CUP 0.11b, . URL http://www2.cs.tum.edu/projects/cup/.

[Online; accessed 2016-01-04].
[4] JastAddParser, . URL https://bitbucket.org/jastadd/

jastaddparser/. [Online; accessed 2016-01-04].
[5] JFlex, . URL http://www.jflex.de/. [Online; accessed 2016-01-

04].
[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
August 2006. ISBN 0321486811.

[7] F. L. DeRemer. Practical translators for LR(k) languages. PhD thesis,
MIT, Cambridge, MA, USA, 1969.

[8] T. Ekman and G. Hedin. The jastadd extensible java compiler. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, OOPSLA ’07, pages
1–18, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-786-5. .
URL http://doi.acm.org/10.1145/1297027.1297029.

[9] S. C. Johnson. Yet another compiler-compiler. In Unix Programmers
Manual, Seventh Edition, 1979.

[10] D. E. Knuth. On the translation of languages from left to right.
Information and Control, 8(6):607–639, 1969.

[11] E. S. S. Standard. Ebnf: Iso/iec 14977: 1996 (e). 70, 1996. URL
http://www.cl.cam.ac.uk/mgk25/iso-14977.pdf.

