Object-oriented metrics for Java programs

Project in Computer Science — EDAN70
January 22, 2015

Olle Tervalampi-Olsson

D11, Lund Institute of Technology, Sweden
datllote@student.lu.se

Abstract

A key aspect of software metrics, are dependencies. That is,
how different classes and packages make use of each other
to construct a program. Object-oriented metrics allow these
dependencies to be analyzed and give an overview of how
stable and healthy the program is for some aspects. We
introduce a new tool that is an extension of the JastAddJ
compiler and calculates these metrics on java source code,
similar in functionality to JDepend and some functions that
exist in CodePro Analytiz.

Keywords Metrics, JastAddJ, CodePro, JDepend,

1. Introduction

The object-oriented software package metrics, as described
by Martin in his 1994 paper OO Design Quality Metrics[4],
are today used in both industry and academia to evaluate
some aspects of an object-oriented project. Doing this re-
quires calculating a number of metrics, described later in
this paper, where the most important are efferent and af-
ferent couplings.

Computing these metrics by hand is both time-consuming
and error-prone making it advantageous to use a tool. The
tool used should, of course, be efficient and error-free. An-
other desirable quality is to distinguish between standard
and user-defined classes, something that the current metric-
tools cannot. To know that a package in your project is
dependent on e.g. the Java class ArrayList might not be
very relevant to the stability of your project.

In this paper we give an overview of Martins metrics, a
short introduction to JastAdd and the JastAddJ compiler
and their functionality, as well as describing the implemen-
tation of a tool that calculates the metrics in JastAdd and
give a review of the methods used to solve the problems and
analyze the source code. Finally, we present an evaluation of
the performance and functionality of the tool as compared
to JDepend and the relevant parts of CodePro.

2. Problem description

In order to calculate the different metrics we need to de-
termine the dependencies that exist between Java packages.
To do this we need to examine the dependencies that classes
have towards each other, specifically classes that are not in
the same package. These dependencies are called couplings.

Marcus Lacerda

D11, Lund Institute of Technology, Sweden
datllmla@student.lu.se

While coupling are seemingly easy to define and intuitively
understand, it is not immediately clear what kind of code
actually creates a coupling. Here, we first present the differ-
ent types of couplings and the metrics that can be calculated
from couplings, and then discuss what to actually include
as a coupling.

2.1 Package metrics

What follows is a brief description of the object oriented
design quality metrics mentioned in [4]. The paper defines
the metrics in terms of categories which in Java terms cor-
respond to packages which is the term that will be used
throughout this paper.

Afferent couplings, C,, for a package is the number of
classes outside a package that depend on classes within this
package.

Efferent couplings, C., for a package is the number of
classes inside a package dependent on classes outside of this
package.

Instability, I is a quotient calculated as C./(Ce + C,).
This measure has a range from 0 to 1 where I = 0 is maxi-
mum stability and I = 1 is minimum stability.

Abstractness, A, is the ratio between the number of ab-
stract classes through the number of classes in a package.

Furthermore, a package is said to be balanced if the sum
of its instability and abstractness is 1 (A + I = 1). This
definition gives us the the main sequence, a line from the
point A = 1,1 = 0to A = 0,I = 1. The main sequence
allows us to define the last metric.

Distance, D, is the distance from the packages A and
I to the main sequence calculated |(A 4+ I —1)/2|. A value
close to zero is preferred.

So what kind of code should generate a coupling? The basis
for our implementation is that if a class uses another class in
any way, for example by accessing their methods or public
member variables, that class which makes the call has an
efferent coupling to the callee. At the same time, the callee
has an afferent coupling to the caller.

As we want any usage of a method to constitute a cou-
pling, simply typing

UserCreatedObject uco;

will create a coupling. This has the small drawback of poten-
tially creating an extra coupling to an unused class unless
the programmer is careful and makes sure to make use of the
object, this is something which should be caught at other
stages in the process.

If a package implements a class with a public static member
variable, and it is accessed with

int foo = UserCreatePackage.UserCreatedClass.memberA;

this will also create a coupling. Using string literals or prim-
itive java data types will not create a coupling to java.lang.
This is done since in order to ensure the calculated metrics
(instability and distance from the main sequence) remain as
close to the intent of the metric as possible. A program will
not become more or less stable because it uses integers.

A third note on couplings is that we do not implement
them as a transitive relation. This is again a choice made
to stay as close to what the metrics represent as possible.
If a package Foo has an efferent coupling to a package Bar,
which in turn has an efferent coupling to a package Qux,
we do not know if any of Foos usage of Bar will actually
change or in any way affect the relationship between Bar
and Qux.[6]

3. JastAdd and JastAddJ

Our tool is constructed as an extension to the JastAddJ
compiler[2]. JastAddJ is a modular Java compiler that is
implemented in JastAdd, a declarative, aspect-oriented lan-
guage. JastAdd is designed to support compiler implemen-
tation and related extensions such as analysis tools[5].

To add the tool to the JastAddJ compiler we extend the
frontend of the JastAddJ compiler. As previously stated,
we want to perform the computations on the source code
and not on byte code and it is therefore necessary to add
attributes and equations to the nodes in the abstract syn-
tax tree that JastAddJ generates, before the generation of
bytecode.

When considering how to find different couplings between
classes in different packages, things get a bit complicated.
In the AST that JastAddJ constructs, the root node is a
program and a program node in turn consists of zero or
more compilation units. These compilation units correspond
to a .java file, and as such we see that there is no handling
of packages at the AST-level (Each compilation unit has a
packageDecl attribute that is a string, but there is no rep-
resentation of packages in the AST).

As classes can be nested inside a .java file it is incorrect
to think of a compilation unit as representing a single java
class. Instead, a compilation unit has, among other things,
a list of TypeDecl nodes. Theses nodes can then be a Ref-
erence Type, which in turn can be a ClassDecl or an Inter-
faceDecl.

Each call to a method is conveniently found inside a node
MethodAccess in the tree that represents the call. These
nodes have a decl attribute that gives us a corresponding
definition of the call as a MethodDecl node.

Figure 1. A graph showing the dependencies between two
classes, A and B, where A uses B.

4. Implementation

What we will be primarily interested in is to create two
different JastAdd collection attributes for each package in a
Java project. One to keep track of the efferent couplings and
the other to track afferent couplings. Once this is done, cal-
culating the instability, abstractness and distance becomes
quite easy. Thus, when a class A in a package P creates an
object of type B that is in a package Q, an efferent coupling
from P.A to Q.B is added to P, and an afferent coupling is
added to Q.

One could imagine a coupling for every import, however, a
coupling should only be created if the value is later used.
For example, if a package P has five classes, and a class
outside of it does import P.*, we do not want to create five
couplings unless all five classes in P are actually used.

The process is further complicated by the possible use
of static calls, for example it is possible to do foo =
P.bar.baz() without importing P or bar, provided bar
and baz are declared to be static. These method calls also
need to be found to be a coupling and added to the collec-
tion attributes if the classes accessed are outside the current
package scope.

For implementing the tool we needed to find a good way
to solve several problems, including:

e The ability to find the compilation unit for MethodAc-
cess and MethodDecl objects

e The ability to find the class or interface a Method Access
or MethodDecl is in.

e A way to iterate through all compilation units in a
package.

The first two problems are rather trivially solved. We added
the preexisting inherited attribute compilationUnit() to the
MethodAccess and MethodDecl nodes. These nodes already
had an attribute HostType corresponding to the enclos-
ing class or interface. We then created two sets of strings
for each compilation unit using the JastAdd collection at-
tribute. When a method access is found, we look at the
compilation unit for the MethodAccess and the correspond-
ing MethodDecl. If these compilation units have different
packages we have found a coupling. We then add a string
containing the necessary coupling info to the efferent set for
the caller, and the afferent set for the callee.

In order to present this information to the user in a nice
way, we would like to present the couplings on a package
basis. In order to do this we iterate through all compilation
units, adding the couplings present to a HashMap, where
the key is the name of the package and the value is a set
containing all couplings for the package. Then we iterate
through this map and present the couplings for that pack-
age, as well as additional info on stability and abstractness
of the package.

During the implementation and design we were faced with a
number of important design decisions. For instance, deter-
mining whether interfaces should contribute to a packages
abstractness or not. We decided that interfaces should be
counted in the same way as abstract classes when computing
abstractness, since an interface is basically an abstract class
with only abstract methods. The main difference between
the two is that multiple interfaces can be implemented by
the same class but only one class can be extended. Further-
more, no logic can be held in the methods® of an interface
which is not the case for abstract methods. The only rele-
vant aspect in terms of abstractness is that both interfaces
and abstract classes need other classes that implement and
extend them.[4] Thus they should both be counted equally.
Also, both CodePro[7] and JDepend[1] include interfaces
when calculating abstractness.

We also had to make a decision regarding how to distinguish
between couplings between classes created by the program
and couplings from the program to standard libraries. Here,
we chose to include both types of dependencies but separate
them. This so that user-defined package couplings could
be easily determined, while at the same time not losing
information regarding standard packages which other pre-
existing tools provide. Another good aspect of including the
user-defined packages is that the tool becomes more easy to
use compared to other tools, e.g. for testing purposes.

5. Testing

For testing, we set up an automated framework that looks
at a directory containing several test directories, where each
directory is a specific test case. For each test case, all the
java files inside the directory are compiled with the Jast-
AddJ compiler with our tool extension, and the output is
written to an outfile. We then compare this output to a
manually written file containing the expected output for
each test case. This works well for smaller cases when the
metrics are easily calculated by hand.

An example of the smaller test cases we used is:

e Two classes in different packages calling each other.

e Three classes in different packages calling each other in
a cycle.

e Making a call to a method in another package from a
nested class, ensuring the tool correctly reports a cou-
pling from the nested class.

e Testing to ensure that interfaces are correctly counted as
abstract classes.

1 Java 8 default methods

e Classes that make use of standard java library classes
and ensuring the afferent couplings gets added to the
packages for these classes.

e Testing the option to not count standard library func-
tions when calculating metrics.

e Ensuring all interfaces gets added as couplings for classes
that implement several interfaces from different pack-
ages.

e Checking the instability output when a package has no
efferent or afferent couplings (Ensuring the tool doesn’t
crash because of a division by zero)

For the larger test cases, we use the same approach but
instead of calculating the expected output by hand it is
instead manually compared with the output of two other
available tools, JDepend and CopePro and determined to
be correct.

6. Evaluation

Once our tool passed the small and large test cases, we
started comparing the output of the tool with the output
from CodePro and JDepend, and measuring the speed of the
tool as compared with the speed of JDepend (CodePro can
only be run via Eclipse, and we have not found a suitable
way to measure the speed of the analysis).

All of the tools require some degree of compilation before
the analysis is run. JDepend works on .class files and as
such needs all java files to be compiled before analysis, our
tool takes .java files as input and proceeds to carry out
calculations after the analysis phase of compiling. The tool
we built skips the code generation step completely, saving
time. It would be possible to provide it as an optional ex-
tension to the full JastAddJ compiler to allow for complete
compilation while optionally running the analysis.

6.1 Functionality

Our tool, CodePro and JDepend have all taken different
approaches to the software package metrics, and we will list
the primary differences and provide brief discussion of them
and why they differ.

The first thing we need to look at is what constitutes a
coupling. JDepend considers every use of standard java ob-
jects and primitive types to be a coupling. For example, the
following would be considered having an efferent coupling
to java.lang as it uses ints.

public class Foo {
public int bar() {
return 17;
}
}

CodePro takes another approach in which ints and other
primitive data types do not constitute a coupling, however,
creating a String would be considered one. While string is
not strictly defined as a primitive data type, it is very widely
used and has lots of special support from the java language.
For this reason, our tool also does not consider the creation
or use of a String object to be a coupling. Our decision is
based on the opinion that knowing a program uses Strings
or ints doesn’t say enough about the software package to

quxnorf

Norf Qux

foobar

Figure 2. A graph showing the dependencies between four
classes, two in each package.

warrant inclusion in the analysis, as that would only ensure
almost every class has a coupling to java.lang, but not be
very interesting. Our tool primarily analyses method calls
and use of objects, and invoking String.substring() or
similar methods would result in a coupling to java.lang,
but simply creating or using a String would not. However,
when a program creates a user-defined object, a coupling to
that package is added, as the constructors for those classes
might affect the state of the program.

The tools also differ in presenting the dependencies between
classes and packages. For example, consider the diagram in
figure 2. As we can see, we have two different classes in one
package using two different classes in another package. JDe-
pend and CodePro will treat both these uses as one single
coupling from one package to the other, whereas our tool
reports that there exists two couplings from one package
to another. We feel this allows the stability measure to be
of greater use. If we consider the stability measurement as
defined by Martin [4], stability is a measurement of how
likely a class is to change, and one reason a class is unlikely
to change is that it is depended on by many other entities.
Thus, it makes more sense that a package that is being de-
pended on by ten different classes in two different packages
should be more stable than a package that is depended on
by three different classes in three different packages.

JDepend and CodePro also only reports at a package level,
telling us that one package is depended on by another pack-
age but not providing any information about the relation
between the classes inside of the packages. This could also
lead to confusion. For example, consider the case with a
package with an instability measure that is close to zero. If
we were following object oriented practices, we would try to
come up with a lot of other solutions before we attempted
to change any one class inside that package. However, sup-
pose there is a class inside of the package that is not being
used by any class outside the package. We see that we are
free to change the class (and probably move it to another
package). However, with CodePro or JDepend, these kinds

of situations will not show up, while our tool provides infor-
mation about which classes inside a package that are being
depended on.

Both JDepend and CodePro offer more functionality than
our tool. CodePro has a lot of functions for generating a
lot of things apart from SPM, and JDepend has several
built-in features that our tool does not, for example it al-
lows the user to ignore arbitrary packages in the analysis,
while our program only provides functionality for excluding
java standard packages. On the other hand, no functionality
they offer provides a way to change their way of generating
couplings to ours.

6.2 Performance

In order to get accurate results, we adapted a methodology
based on [3]. We will not provide the statistical background
here but instead provide some reasons for our choice of
methodology. We choose to measure startup performance as
this would be the closest to the real world usage of ours and
other tools as you only need to run them once on a project
to collect the desired metrics. We ran the tests 50 times in
order to get a large enough sample size that the mean value
obtained approximates a normal distribution.

For running the tests we set up a script that would first
run the test once and discard the result in order to mini-
mize variance because of objects and code being loaded into
memory.

When running the tests we used the time command, which
produces an output consisting of three lines, real time, user
time and sys time. Real tells us how much time elapsed, that
is, how many seconds did it take from the command being
put in to the command exiting. This is not very useful for
our purposes as it includes time the thread spent blocked,
interrupted and time-slices used by other processes. User
is the amount of CPU time spent outside the kernel but
within the called process, giving us actual CPU time used
by the process. The last value, sys, is the amount of CPU
time spent in system calls from the process within the ker-
nel. This is still a part of CPU time used by the process (it
doesn’t include time spent in the kernel from calls outside
the process). Thus, the total time used by each call is the
sys+real value, which is what we later use to compute mean
values and confidence intervals.

As previously noted JDepend needs to operate on class
files, and for this reason we included the time to compile
the program using javac in our results as a separate mea-
surement which more accurately shows the actual time to
get the measurements. The commands used to run the the
tests were:

/usr/bin/time -p javac @filelist
/usr/bin/time -p java jdepend.textui.JDepend
tests/junit4.0/

for JDepend with javac,

/usr/bin/time -p java jdepend.textui.JDepend
%testdiry/

for just JDepend and

/usr/bin/time -p java -jar software-metrics.jar
-nostandard Ytestdiry/*

JDep JDep & javac Our Tool
SmallTest
MeanUser 0.10 0.84 0.65
MinUser 0.08 0.79 0.63
MaxUser 0.11 0.87 0.67
StddevUser 0.007 0.015 0.009
IntervalUser | 0.081, 0.111 0.81, 0.87 0.635, 0.671
MeanTot 0.11 0.88 0.67
MinTot 0.08 0.82 0.64
MaxTot 0.12 0.91 0.69
StddevTot 0.008 0.016 0.011
IntervalTot 0.09, 0.12 0.85, 0.91 0.64, 0.69
LargeTest
MeanUser 0.56 4.01 3.46
MinUser 0.49 3.97 3.30
MaxUser 0.61 4.27 3.79
StddevUser 0.03 0.06 0.13
IntervalUser 0.51, 0.61 3.96, 4.21 3.21, 3.72
MeanTot 0.68 4.34 3.56
MinTot 0.58 4.21 3.39
MaxTot 0.74 4.53 3.89
StddevTot 0.04 0.07 0.13
IntervalTot 0.61, 0.75 4.21, 4.47 3.30, 3.81

Table 1. Results of running our performance measure-
ments. User corresponds to the "User" value given by the
time command, and Tot is the User value plus the "Sys"
value

for our own tool.

Not shown here are the printed results from the removal
of the generated class files after each run of the javac/JDe-
pend test in order to provide the same input state each
time. Once we had the results we calculated the mean, min
and max values as well as the standard deviation and a 95%
confidence interval for each test.

As can be seen from table 1, none of the confidence intervals
overlap and we can be reasonably (95%!) sure that there is
a difference between all running times. The small suite con-
sists of ~200 LOC (Measured using cloc). For the larger test
suite we analyzed JUnit 4.0, which has 7400 lines of Java
code.

The times included in the table are first the reported user
time, and then the total (user 4 sys) time reported. We
make this distinction since running javac and then JDepend
means having to write .class files to disk in the javac stage
and then reading them again when running JDepend, which
could potentially skew the results. We still include the total
sum in order to report on how long time actual use takes
(since if one of the tools for some reason write a lot of data
then that should still be included in the running time). As
can be seen, the same general pattern emerges regardless
of which one of the results we look at, which is that just
running JDepend on precompiled files is a lot faster than
running our tool and running JDepend with javac first, while
our tool is a bit faster than running JDepend with Javac.
We interpret these results to mean our tool more closely
corresponds to real world usage. When measuring results
with JDepend, it is necessary to have a compiled program,
and once the metrics are calculated they will not actually
change until the program is compiled again, meaning further

running of JDepend, while fast, will not provide new results.

6.3 Other considerations

The handwritten parts of the tool is relatively small and
efficient, the tool itself is at 80 lines, the printing and an-
alyzing of results is 180 lines and the graph generation 160
lines. The final size of the generated jar file clocks in at 1.5
megabytes since it includes a complete compiler front-end
(The generated java code from the compiler is 94K lines).

Our tool is very easy to use. It is contained in a jar file
and the only input required to run it is the .java files of the
project one wants to analyze. The jar file is approximately
1.5 megabytes, which might seem big for such a small pro-
gram, but it includes a lot of generated code necessary for
constructing the AST. As the tool compiles the program in
order to get a functional syntax tree, all .java files necessary
for running the program needs to be provided. The com-
piler will warn if something goes wrong, but still perform
the analysis. It is not possible to use it with eclipse or other
IDEs since it is built as a modification of a custom compiler.

7. Conclusion

We have created a tool that can calculate object-oriented
metrics for java projects and which displays the data both
as text and as graphs. It can compute afferent- and effer-
ent couplings, abstractness and instability as well as the
distance from the main sequence. Our tool can distinguish
between packages from the Java standard library and user-
defined packages.

In comparison to CodePro and JDepend our tool has less
functionality. Although, since our scope was only to create
a good tool for specifically OOM it is not that relevant to
compare other things. Regarding the OOM feature of Code-
Pro and JDepend our tool actually competes quite well. The
information produced by our tool is more detailed and due
to it being a command line tool it can easily be modified by
scripts.

A drawback might be that it cannot be directly included
in integrated development environments since it uses a cus-
tom compiler, as mentioned before. It can however be run
on any project if used outside of the IDE. Also, the graphs
produced start to get incomprehensible when the projects
start to get large, specially the class dependency graph. Be-
cause of this it might be a good idea to divide the analysis
of large project into smaller parts.

Acknowledgments

We would like to thank Jesper Oqvist for supervising this
project.

References

[1] Inc. Clarkware Consulting.
http://clarkware.com/software/JDepend.html
accessed 21-January-2015].

[2] Torbjérn Ekman and Gorel Hedin. The jastadd extensi-
ble java compiler. In Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-

Jdepend, 2009.
[Online;

3

4

[5

6

[7

]

tems, Languages, and Applications, OOPSLA 2007, October
21-25, 2007, Montreal, Quebec, Canada, pages 1-18, 2007.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statis-
tically rigorous java performance evaluation. In Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2007, October 21-25, 2007, Montreal, Que-
bec, Canada, pages 57-76, 2007.

R. Martin. Oo design quality metrics : an analysis of depen-
dencies. ROAD 1995, 2(3), 1995.

Jesper Oqvist and Gérel Hedin. Extending the jastadd exten-
sible java compiler to java 7. In Proceedings of the 2013 Inter-
national Conference on Principles and Practices of Program-
ming on the Java Platform: Virtual Machines, Languages,
and Tools, Stuttgart, Germany, September 11-13, 2013, pages
147-152, 2013.

Robert S. Koss Robert C. Martin, James W. Newkirk. Agile
Software Development: Principles, Patterns and Practices,
pages 261-268. Pearson Education, 2012.

CodePro: Java Developer Tools, 2012.
https://developers.google.com/java-dev-
tools/codepro/doc/features/metrics/metrics ~ [Online; ac-
cessed 21-January-2015].

