Package metrics on Java projects

Project in Computer Science - EDAN70
January, 2015

Joel Lindholm

D11, Lund Institute of Technology, Sweden
gdal0jli@student.lu.se

Abstract

A tool for calculating metric suits over both java source code and its
belonging libraries has been implemented. As of this report the tool
is able to use the Chidamber & Kemerer object-oriented metrics
suite and the Martin Metric suite. A configuration file exist and is
used to change the behavior of the calculations and its output. There
also is an ignore file that can be used to ignore specific packages,
these will not be included in the calculations.

The tool has been implemented as extension to the JastAddJ
compiler, and is therefore easily extended or modified.

Evaluation proved that the tool have an acceptable evaluation
time.

Keywords Martin metrics, Java, Compiler, JastAdd, JastAddJ

1. Introduction

Collecting metric data during software development is an important
task. It is impossible for every team member in a project to have a
deep understanding of the complexity of every part of the software.
Metrics can give an indicator of quality of the software or show
where resources should be focused next. It is though not feasible
to manually calculate metrics by hand, for example lines of code.
Tools are needed to collect this data. The goal of this report is to de-
scribe a metric suite tool called MetricPCE, which is a acronym for
Metric Extension with the first letter of the authors BitBucket user-
names included. It is developed for the Java compiler JastAddJ[1].
It is a highly modular compiler due its aspect based programming.
Extensions can then easily be added to the compile process.

The main task of this project was to implement the metrics pre-
sented by Robert Martin[2], which will be referred to as the Martin
metric. Its purpose is to measure how well classes or packages in
object oriented designs can be modified and extended or reused.
The Martin metric analyses the dependencies, abstractness, insta-
bility and more to achieve this. Aspects from other metrics, like the
Chidamber & Kemerer object-oriented metrics (CK metric)[3], has
also been implemented in the tool. These metrics count for example
the number of methods in classes.

The metrics work on different levels. Not only can the depen-
dencies between classes be calculated, but also between source and
library packages. It is also possible to remove packages from the
result of the analysis. This is to remove unnecessary or unwanted
clutter, for example dependencies to standard Java libraries. Met-
ricPCE is therefore flexible due to that it allows the user to adjust
the tool to its needs.

Johan Thorsberg

D11, Lund Institute of Technology, Sweden
gdalOjth@student.lu.se

2. Background
2.1 JastAddJ and JastAdd

JastAddJ is a compiler build with the JastAdd[4] language for
research purposes.

JastAdd is declarative, aspect oriented, java like programming
language. It is a tool for constructing compilers. The idea is to use
only one data structure during the whole compile process. Parsed
tokens are put into an AST (Abstract Syntax Tree). Attributes and
equations can be added to the different nodes, adding references be-
tween nodes are also possible. Java classes representing the nodes
are constructed from the language. This makes it easy to add and
modify the compiler, because the new code will automatically be
put into the right Java class. For example this project is realized by
adding a number of new attributes and methods to existing class
nodes, which are used in the calculation of the metrics.

2.2 Chidamber & Kemerer object-oriented metrics

The CK metric is an widely used metric suite from 1994[3]. A
number of metrics are calculated for each class in a project. In the
beginning of this project we were given a older implementation of
this metric. We made some alterations to bring this suite up to speed
with the current stable implementation of the JastAddJ compiler,
namely JastAddJ 7.1[5].

The following metrics, from the CK metric suite, are imple-
mented in MetricPCE:

Weighted methods per class: The count of methods in a class. It
indicates how rigid the design is for reuse. A class with a
high count of methods is most likely designed for a single
purpose, which will lead to limited ability for its reuse.
Event handlers and constructors are also included.

Depth of inheritance How deep is the inheritance of a class or
how many classes are above the class in its hierarchy.

Number of children How many immediate children the class has
in the project, i.e. the width of a class hierarchy.

Coupling between object classes How many dependencies to
other classes one class has. This set can be divided into
two different sets. First the efferent couplings (Ce). This
is the set of classes one class is dependent on. Other de-
pendencies which are counted is calls to methods in other
classes, inheritance and reference variables. The second set
is afferent couplings (Ca), which contain all classes which
depend on the one class, basically the opposite couplings
of Ce.

Response for a class The number of methods in a class, plus the
number of remote methods directly called from within the
class.

Lack of cohesion in methods Lack of cohesion is a value repre-
senting the cohesiveness of a class, i.e. how well its meth-
ods functionality are related. A non-cohesive class is a class
that preforms multiple functions with no relation between
some of its internal attributes. Classes with a high lack co-
hesion can and should, according to this metric, be split into
multiple smaller classes. A class with the value higher than
one is considered to be poorly designed[6].

Number of public methods The total number of public methods
and constructors in respective class.

2.3 The Martin metrics

Martin metrics was released the year 1994, the same year as the CK
metric was released. The goal of the suite is to calculate the balance
between instability and abstractness in packages. The Martin metric
calculates dependencies, like the CK-metric dependencies between
classes, between packages. These dependencies plus the abstract-
ness of a package are used to calculate this balance, which is called
Distance from the Main Sequence.

2.3.1 Implemented metrics

The following metrics are implemented in MetricPCE:

Efferent Couplings (Ce) The number of classes in other packages
that this package has a dependency on.

Afferent Couplings (Ca) Opposite to efferent couplings, i.e. the
number of classes in other packages that has a dependency
on this package.

Number of Classes and Interfaces (NPI) As the name indicates,
the total number of classes and interfaces in a package.

Abstractness (A) A ratio between the number of abstract classes
and the number of concrete classes in a package. Ranges
from O to 1, O indicates that the package is completely
concrete and 1 is a completely abstract package. The access
modifiers of the classes and interfaces will not affect the
calculation of this metric attribute.

Instability (I) A ratio between efferent couplings and the total

number of couplings in a package, this is given by the
following equation.

Ce
Ce+ Ca

It ranges from O to 1, O indicates that the package is com-
pletely independent. In short a package will be more stable
if it has few efferent couplings as possible and as many af-
ferent couplings as possible.

(eY)

Distance from the Main Sequence (D) An ideal package, accord-
ing to Martin, have a distance of close to zero to the main
sequence line which is the line between the points (0, 1) and
(1, 0), see Figure 1. The distance from this line is calculated
with the equation.

D=|A+1-1] @)

The most desirable spot for a package is on the end nodes,
to be both completely abstract and stable or to be com-
pletely concrete and instable. In MetricPCE, this metric can
range from [0,70.707] or it can be normalized to [0, 1]. This
can be configured by the users.

2.3.2 Example

Here is a small example of Martin metrics. Two classes, Class1 and
Class2, from two different packages, P1 and P2:

package P1;
import P2.Class2;
public class Classiq{
public void run(){
Class2 c2 = new Class2();
c2.run();
}
}
package P2;
public class Class2{
public void run(){
System.out.print ("Hello World");
}
}

P1 has an efferent coupling to P2 and no afferent couplings. This
will makes P1 fully unstable. Also it is completely concrete. P1
is right on the node (1, 0) in Figure 1. The relationship between
abstractness and instability discussed above in this section results
in a distance, D, of 0. This is an ideal package according to Martins
metric. A concrete package can’t be extended without alterations
to its existing classes. Therefor the class must be instable, which
means that the class can be changed without forcing changes in
other classes.

P2 on the other hand have only one Afferent coupling which
means the package has an instability of 0. This package is though
fully concrete. This results in the maximum D of ~0.707, and ends
up on (0, 0) in the graph. We have a package that cannot be
extended but is also completely stable, because changes can have an
effect on dependent packages. This package is too rigid, we cannot
do any alterations without expecting remote effects. This package
should be rewritten or removed. For example Class2 could be added
to P1 and P2 removed completely.

1

Abstraction

Instability 1

Figure 1. the main sequence line, A + I = 1[2].

3. MetricPCE

The result of this project is prototype tool called MetricPCE. Met-
ricPCE calculates a number of metric suites over the source code
of individual java projects. The tool is built as an extension of the
JastAddJ compiler and will be using the compilers internal code
structure to evaluate a given project. When this report is written,

two sets of metrics have been implemented, the Martin metrics and
the CK metric suite.

3.1 Capabilities

The capabilities of the tool will be explained in this section. There
are three main features of the tool: Configure what will be calcu-
lated when the tool is used, filter out packages from the calculations
and the different output files.

3.1.1 Configure the result

With the tool comes a configuration file. This file will be read by
MetricPCE before it starts its calculations. The format of this file is
a standard text file (.txt), and can be read and edited like one. Look
at this example.

This is a comment
configuration_namel = 1
configuration_name2 = hello

Each row in the file is read as a new configuration in the tool. The
name of the configuration and the value is split by an equal sign (=).
Rows can be ignored by adding a number sign (#) in the beginning.
Internally the tool can handle missing configurations and unused
ones without crashing.

Examples of configuration are: what specific metrics should be
calculated, what metrics should be included in the final result files,
which kind of output files should be created and design options for
the .dot files.

The format of the .dot files are of a simple text language used
GraphViz[7], which is an open source graph visualization software.
With this format nodes and their relations can be described. In
the resulting .dot files nodes are represented as either classes or
packages and their relations as the different couplings.

3.1.2 Ignore packages

With the tool comes an ignore file. In this file the user can spec-
ify which packages should be ignored by MetricPCE, when pre-
forming its calculations. This can be used as an example to ignore
standard libraries, which will otherwise alter the outcome of the
calculations and clutter the dependency graphs.

3.1.3 Result files

As of this report three output files are available after the calcula-
tions. First is a text file, which contains the result in a simple text
format. Each row represent a metric and its result, or to which pack-
age or class the following metrics belong to.

The second file is a .dot graph of dependencies between pack-
ages and its classes. Each node represent a package, and each pack-
age contains the classes which have dependencies outside of the
package, see Figure 2. It will not be possible to decipher any infor-
mation from theses graphs on larger projects without configuring
the ignore file. This graph has been mainly used during the devel-
opment of the tool itself. If the ignore file is used to filter out large
part of a project, this type of graph can be useful to inspect specific
parts of a project.

The third file is yet another graph, see Figure 3. This graph
shows the dependencies between packages plus the result from
martin metric. This type of graph gives the user a better overview
of larger projects, where it might be more interesting to inspect the
couplings between packages instead of individual classes. These
graphs will not be as clustered as the class graphs when it comes to
larger projects.

3.2 Internal structure

Figure 4 shows the modified internal AST structure of a project
compiled with JastAddJ with the MetricPCE extension. The top

abstractpackage default
abstractpackage ApClass2 | NpClass2
|

ownpackage -
&

L NpClassl |

Figure 2. Packages with external dependent classes.

ownpackage Cwnllass

The Markin Mekric

ahstractpackage
A -033333
|-0.0
DMS - 0. 66667
default
ownpackage A-00
|-1.0
A-00 [——
b~ DM - 0.0
|- 0.0 L
DMS - 1.0

Figure 3. Packages external dependencies and martin metric result

node, Program, consist of a list with all the source files. These
nodes are created during the parsing phase. Later the library files
are added to the top node as NTA:s (Non-Terminal Attributes), i.e.
they are created after the parsing.

In the AST library and source files are both of the type Compi-
lationUnit.

There existed no node for packages in the structure of Jas-
tAddJ:s AST. The packages are only represented as strings in each
source or library file. This was not deemed enough to represent the
packages. Therefore a new parameterized NTA was added to the
AST to represent the packages. Figure 4 shows how the structure
looks like with the MetricPCE extension enabled. The new NTA:s
are connected to the Program node and a reference to each class
and Interface deceleration is added to the package nodes.

4. Evaluation

Obviously there are other tools that calculate the Martin metrics on
Java object oriented projects, one of these tools are JDepend[9].
Most of these tools, JDepend included, analyses the generated
*.class’-files instead of the source ’.java’-files. This might result
in deviations from the original definition of the Martin metric,
and inaccurate calculations. For example different compilers might
optimize some code by creating different .class files for a given
object. It might add a constant and a nullable type of that object.
This will result in a higher number of classes in the package which

Pru:-gr_.%‘l}
l:Snurce H'ES} -@kﬂgﬂg])

6_ :“}) @bmryhle:?‘l

=

=
e
T

'| |

s“ |

Figure 4. The internal representation of the project in JastAddJ,
with the MetricPCE extension.

will alter the result of abstractness and instability. Another problem
is that these type of tools can not differentiate between source
classes and library classes. In the following section MetricPCE will
be compared to JDepend.

4.1 Differences

At first a ratio of correctness between the two tools was supposed to
be evaluated. This proved to be a problem, because the tools have
different interpretation of how the Martin metric is evaluated. Met-
ricPCE follow the original definition on couplings that calculate on
classes to classes, see section 2.3.1 and 2.3.2. JDepend calculates
this on a package to package level instead.

4.2 Correctness

The correctness of MetricPCE has been tested during the whole
development process with a number of test cases. Some minor bugs
have been noticed, but these do not alter the results at large. In some
cases some library classes do not place themselves in their package.
This has a small impact on afferent couplings on package level,
which are in MetricPCE calculated based on the efferent couplings
to a package. This occurs only for library packages and is not very
common, and is therefore not considered a major problem. After
these conclusions it was decided to do the evaluation based only on
time.

Some errors in number of classes where noted in JDepend, but
only with one or two to many.

4.3 Calculation time

To figure out how well the tool perform time wise, seven project of
different sizes where selected, all taken from open repositories on
GitHub. The total number of source lines of code (SLOC) where
calculated. Despite their differences, the tools where configured to
calculate the whole Martin metric suite. No packages or libraries
where ignored. They were forced to produce one text file with the
result. Error checking was enabled on MetricPCE, which might
have slowed the process down, but not significantly. Both tools
calculated the Martin metrics 10 times for each project, and each
time was recorded. A confidence interval was calculated from the
results.

4.4 Result

In Fig 5 the results of the calculation time have been plotted. The
confidence interval shown in the graph is on 95%.

5. Discussion

Let’s start with only looking at MetricPCE. From the graph in
Figure 5, MetricPCE seems to grow linearly with the SLOC. The
confidence interval for each project is almost invisible in the figure

Tool Evalution - Calculation time

12000 +
+ metricPCE
10000 |- - + Depend |
OO0 b e
o
=
o BOOO L
E
'_
4000 F oo oo]
[]
000k e o L
+ +
+ o+
+ 4+ 4+ +

]
0 2805 4046 4911 5381 1220828371 34767
Source Line of Code

Figure 5. Graph of calculation time as function of SLOC.

due to the scale of the axes. Although one interval stands out,
project number 6. The interval is slightly larger and we do not know
why. The interval is 235 ms which is quite small, considering it
takes around four seconds for the calculations, so the tool can still
be considered stable.

The most interesting piece of the result is the last data-node for
JDepend. JDepend’s evaluation time is significantly less than Met-
ricPCE:s, for most projects except for last. This project was reeval-
uated again, to make sure that the data was correct. The problem
did not seem to be the source code of this particular project, but the
extensive library that it used. As been said before, JDepend pre-
forms its calculations on the java byte code, and therefore do not
differentiate between library and source code. This forces the tool
to evaluate the entire library. MetricPCE only calculates on classes
that have dependencies to the source code, and can ignore large
unused parts of libraries. This is believed to be the cause of this
result.

6. Conclusion

We strongly believe that the tool, MetricPCE, is a good comple-
ment to the set of metric tools available. There still some minor
bugs in the implementation, but they do not have a significant im-
pact on the results. The time it takes to run the tool is within an
acceptable time frame, around 4 seconds on 35000 SLOC, with an
extensive library.

Compared to other metric tools like JDepend, the fact that Met-
ricPCE can differentiate between source files and class files which
gives it a slight advantage. It will only load library files that are
used by the project. Execution time will not increase significantly
when extensive libraries are used by projects. One drawback is that
MetricPCE can only be used on source files.

6.1 Future improvements

Further extensions to MetricPCE can be added and tweaking the
already existing features would increase the overall usability.

We tried to follow design principles to make the implementation
of new metric suites as effortless as possible. It was not entirely
possible mainly due to a lack of time. When extending MetricPCE
with new metrics, the ideal would be that the old code could be
left alone. Though not extensive, a few alterations are needed when
adding a new metric suite.

The ignore feature has great use, but cannot do anything other
than ignore packages. It would be useful to extend it so that it is to

ignore specific classes in a package. Also adding the possibility to
exclude a sub-package from the ignore file could be useful feature,
e.g ignore java.* but still keep java.util.* in the evaluation.

When a package is ignored, it is ignored completely. That is, it
will not be included in the calculations, and this will alter the results
of the packages who have dependencies on ignored packages. An
added configuration to only ignore files in the graph output but still
keeping them in the calculations would be an interesting feature.

The output text file format should follow a well-known stan-
dard, like XML or JSON.

The result on the large file was interesting. We believe the result
is because of the big library used in that specific project but there
could be something else. More tests on other big projects should be
done.

Acknowledgment

We would like to thank out supervisor Gorel Hedin, who have been
a great support throughout the whole project. We would also like to
thank Jesper Oqvist, who has been a big help when we needed him.

References

[1] T. Ekman and G. Hedin: The JastAddJ extensible Java compiler, OOP-
SLA 2007. ACM, New York 2007

[2] R. Martin: OO Design Quality Metrics. An analysis of dependencies.
ROAD 1995, vol 2. No 3. 1995

[3] R. Shyam Chidamber and Chris F. Kemerer. A Metrics Suite for Object
Oriented Design. Transactions of software engineering, vol 20. No 6
june 1994.

[4] G. Hedin. Tutorial: An Introductory Tutorial on JastAdd Attribute
Grammars GTTSE III, 166-200, LNCS 6491, 2011.

[5] J. Oqvist and G. Hedin, Extending the JastAdd extensible Java compiler
to Java 7. ;In Proceedings of PPPJ. 2013.

[6] Tuomas Salste, Cohesion metrics, aivosto, read 17 dec 2014,
http://www.aivosto.com/project/help/pm-oo-cohesion.
html#LCOM1, read 17/12-2014.

[7] GraphViz. http://www.graphviz.org/About.php, read 19/1-
2015.

[8] JastAdd Team, JastAdd Concept Overview, read 19 jan 2015, http:
//jastadd.org/web/documentation/concept-overview.php

[9] JDepend. http://clarkware.com/software/JDepend.html,
read 13/12-2014.

