
EDAN70 - Compiler Project
JastAdd library for name analysis

Daniel Forsman
PI10, Lund Institute of Technology, Sweden

atp10dfo@student.lu.se

Jakub Górski
D07, Lund Institute of Technology, Sweden

dt07jg8@student.lth.se

Abstract
During the process of constructing a compiler there are sev-
eral steps that are crucial to the analysis of code. This paper
will stage one of these steps, namely the development of a
name analysis library. This will allow programmers to eas-
ily modify the name analysis, which will enable more ver-
satile prototyping of compilers at the name analysis stage.
By exploring the possibility for a name analysis library for
JastAdd, an attempt to implement a generic name analysis li-
brary will be made, such that it supports several languages.

Keywords Name Analysis library, scoping, name binding,
JastAdd.

Introduction
JastAdd is a system for generating language-based tools,
such as compilers [3, p.1]. The subject of this paper will be
a JastAdd library whose purpose is to simplify creation of
name analysis. Where simplifying denotes reduction of re-
quired code size to implement the name analysis procedure.
Because almost all programming languages are required to
map variable usages to their respective declaration (name
analysis) it is desirable to investigate the potential simplicity
of a generic name analysis implementation.

Name analysis is conventionally implemented using at-
tribute grammar in JastAdd, where certain nodes in the
abstract syntax tree (AST) are decorated with attributes
which denote certain properties. Such properties are imple-
mented by utilizing Java’s object-orientation and JastAdd
code, which creates a symbiosis between attribute grammars
and object-orientation.

By observing many different kinds of name analysis rules
for compilers we conclude that there are many similarities
within these rules in programming languages, such as dec-
larations being used to initialize variables . The developer
of the compiler often has to write similar code for different
languages. This takes effort and time. Figure 1 shows how
we would like to have it.

Figure 1. Illustration of how name analysis from the two
languages State Machine and Block should be gathered into
a library with common language rules

Alternatively, name analysis can be done using a generic
tool in the form of a library, which is then used to implement
name analysis, and thereby reducing code size. JastAdd’s
interface syntax allows attributes and JastAdd grammar [3,
p.25] to be defined inside Java Interface classes. The goal
is to write a library which uses the information gathered
from abstract syntax tree classes to perform name analysis.

The result of our project is a .jrag file with some essen-
tial name analysis features: Name binding, declare before
use, multiply-declared variables, and scoping. The pro-
grammer uses the library by implementing library-specific
interface classes into the AST classes. Some of the inter-
faces have attributes which will be required to be set.

The library uses interfaces to represent classes that the user
might implement. Consider the declare before use scenario.
The user needs to create three classes: a symbol declaration
class, a symbol usage class and a scope class. These should
implement the library’s class. The user can then specify at-
tributes for how he wants the name analysis to be done. Here
is a snippet of code showing an example code:

IdUse implements Usage;

IdDecl implements Declaration;

Program implements Scope;

1 2015/1/23



syn boolean Program._declareBeforeUse() = true;

Our goal is to contain the name analysis library inside a
.jrag file, which can analyze simple languages. This library
contains Java Interface classes which the programmer ex-
tends the AST classes with. As the library matures more
types of AST classes will gain the ability to be interfaced
with the library, as well as a well defined library usage spec-
ification, however that will not be a subject for discussion in
this paper.

The Name Analysis Library
The construction of the library is based on interfaces. The
idea is to create your own AST classes and then ensure that
those classes implement the appropriate interfaces which
reside inside the library. For example if we would like to
tell the library that our AST class State should be treated
as a declaration , then the State class should implement the
interface Declaration. Using the library the code would
look like this:

State implements Declaration;

Some interfaces contain attributes, which are always re-
quired to be set. When this step above is done then the li-
brary and JastAdd will, if required, enforce certain attributes
to be set by the user.

syn String State.name() = getStateID();

Where the name() variable is required by the library, and
the getStateID() attribute returns the name of the decla-
ration.

Upon implementing all appropriate interfaces the library
will supply the user with a name analysis, by utilizing the
information from the classes that are implementing library
specific interfaces.

Implementation
This section is dedicated to explain how the library was im-
plemented in this project and how it should be used.

Our implementation of the library relies on the fact that
we can utilize interfaces and implement these interfaces into
chosen classes and then use the attributes the library gives
the user. When the user implements Declaration interface to
the State AST class there will be attributes available to the
user.

Declaration interface
The Declaration interface is the library specific interface
used to represent a name declaration inside the library struc-
ture.

The library requires the user to bind the name attribute of
the declaration to its appropriate AST class attribute, as it
will be needed during the name analysis.

Usage interface
The Usage interface is the library specific interface used to
represent a name use inside the library structure.

Just like with the Declaration interface the library en-
forces the user to specify the name of the variable that is
being used. We need the user to do this so the library can
find the declaration which corresponds to the usage. Exam-
ple:

syn String IdUse.name() = getID();

The attribute gained from implementing this interface
is decl(), which is an attribute that creates a reference
between the node that declares the symbol and the node that
uses the matching symbol. The decl() attribute is of the
type Declaration.

Scope interface
The Scope interface is used to scope the name analysis li-
brary’s internal AST into sections, whereas programmati-
cally the Scope interface represents the beginning and end
of a code block. Such scopes are utilized to trace the defini-
tion site of a symbol use, which in the context of the library
would mean to group its AST into subtrees, which contain
their respective Declaration and Usage classes. Here fol-
lows an example of a Scope in Java:

// Name Analysis .jrag file

Block implements Scope;

// Java code

int a = 0;

if(a) { // this is a Block

int b = 0;

}

This Scope interface enforces the user to specify two
features. The first is whether the rule declare before use
should be employed, declareBeforeUse(). The second
is checking for enclosing scopes, checkEnclosingScopes().

Lookup pattern
The lookup pattern has been implemented with accordance
to what has been taught in the compiler course. The Usage

interface has an attribute decl() which gets its value using
the lookup() pattern. The lookup() pattern looks at its
current scope and retrieves all declarations in the scope. If
they match then a binding is created. If there is no match
then the checkEnclosingScopes() attribute is checked if
the is true, if so then check the library will check enclosing
scopes.

2 2015/1/23



Enclosing scopes
The procedure to find enclosing scopes is simple. It looks at
parents until it finds a parent node in the AST which is of
instance Scope. At this point we have found the enclosing
scope of the current scope.

If there are no further parents the top node has been reached
and there are no more enclosing scopes.

Declare before use
In order for the library’s internal data structure to be man-
ageable a local index is given to each interface bound to an
AST class. The local index is used to decide where in the
program the declaration is placed, and numbers the AST
classes. The local index is an attribute, which resides in the
library, and is used by the library alone.

We check the local index of the symbol usage to see if it
has a higher or equal value compared to each of the declara-
tions it might be bound to. If the declare before use feature
is set to false the local index will be ignored when looking
for the declaration.

Multiply declared
To check if a symbol declaration already exists we give the
Declaration interface a boolean attribute, isMultiplyDeclared(),
and an attribute, lookup(). The lookup attribute works the
same as the lookup for the Usage class. The attribute is ei-
ther false or true depending on if the lookup finds a different
declaration with the same name as the currently desired one.

This lookup assumes that the user is looking for symbols
being declared before the current declaration.

Example
To test the result of the library we constructed an error
handling aspect. This code is an example of how a developer
would use the attributes in the library:

...

aspect ErrorContributions {

IdDecl contributes error("Variable ’" + getID()

+ "’ is already declared.")

when (isMultiplyDeclared())

to Program.errors() for program();

IdUse contributes error("Variable ’" + getID()

+ "’ is not declared.")

when (decl() == null)

to Program.errors() for program();

}
Error Handling language abstract grammar.

Here the attributes isMultiyplyDeclared() and decl()
are used.

Internal library attributes
All the library attributes discussed above are useful. These
are meant to be used. There are also internal library attributes
that are used to construct them. These internal attributes can
also be used by the user, but aren’t meant to be used.

Evaluation
Deciding factors defining the efficiency of using the name
analysis library is the amount of lines of code required to im-
plement name analysis without the library, versus employing
the name analysis library.

The name analysis library has been used to implement name
analysis in three languages, which will be described in this
section. The State Machine language is purely flat code,
whereas the Block language supports scoping. The Struct
language has been constructed in order to provide an es-
timate for its language analysis without using the library.
The library, in its current state, cannot analyze this language
however.

In Table 1 the results for lines of code are presented, where
code comments have been excluded from the line count. The
results show that the library works as intended.

Implementation (LOC)
Language Manual Library
State Machine 25 LOC 9 LOC
Block 29 LOC 9 LOC
Struct 81 LOC -

Table 1. Required lines of code for implementing name
analysis manually versus using the name analysis library
counted using the tool CLOC. CLOC excludes comments
and empty lines from the count.

State Machine language
The State Machine language has support for defining states
and binding them by creating transitions between those two
states. The language is defined by the following abstract
grammar and library assisted implementation:

1 Program ::= Stmt*;

2

3 abstract Stmt;

4 State:Stmt ::= IdDecl;

5 Trans:Stmt ::= IdDecl From:IdUse To:IdUse;

6

7 IdDecl ::= <ID>;

8 IdUse ::= <ID>;
State Machine language abstract grammar.

3 2015/1/23



1 aspect NameAnalysis {

2 Program implements Scope;

3 syn boolean Program._checkEnclosingScopes()

4 = false;

5 syn boolean Program ._declareBeforeUse() = true;

6

7 IdUse implements Usage;

8 IdDecl implements Declaration;

9 syn String IdUse.name() = getID();

10 syn String IdDecl.dname() = getID();

11 }
State Machine library assisted name analysis.

The library assisted name analysis defines scoping rules
with the checkEnclosingScopes() attribute, which in
this case is set to false due to state machine language
consisting of only one scope. The lack of scoping can be
noted in the example State Machine code below:

1 state S1;

2 state S2;

3 trans a:S1->S2;
State Machine language example code.

Block language
The Block language is essentially the State Machine lan-
guage, but with the additional ability have sever scopes.
Thereby the checkEnclosingScopes() attribute is set to
true, which enables analysis through enclosing scopes at
the name analysis stage. The Block language is specified
by the following abstract grammar, and has the following
library assisted implementation:

1 Program ::= Block;

2

3 abstract Stmt;

4 Block:Stmt ::= Stmt*;

5 State:Stmt ::= IdDecl;

6 Trans:Stmt ::= IdDecl From:IdUse To:IdUse;

7

8 IdDecl ::= <ID>;

9 IdUse ::= <ID>;
Block language abstract grammar.

1 aspect NameAnalysis {

2 Block implements Scope;

3 syn boolean Block._checkEnclosingScopes() = true;

4 syn boolean Block._declareBeforeUse() = true;

5

6 IdUse implements Usage;

7 IdDecl implements Declaration;

8 syn String IdUse.name() = getID();

9 syn String IdDecl.dname() = getID();

10 }
Block library assisted name analysis.

If declareBeforeUse() is set to false then all state-
ments inside scopes Block are analyzed. Thereby making
the following code example valid:

1 {

2 state S1;

3 {

4 trans a:S1->S2;

5 state S2;

6 }

7 }
Block language example code.

Struct language
The Struct language has the ability to declare and access
typed struct data structures. Additionally all variables
are now typed, which requires type analysis. Currently the
name analysis library doesn’t do type analysis, and therefore
doesn’t meet the requirements to analyze this language.

Nonetheless, this language is described in this report be-
cause its name analysis has been implemented without name
analysis library assistance, which results in data that can be
seen in Table 1. Different potential directions of implemen-
tation will also be discussed.

The Struct language abstract syntax tree is defined by the
following AST code:

1 Program ::= Struct* Stmt*;

2 Struct ::= StructType Stmt*;

3

4 abstract Stmt;

5 DeclarationStmt:Stmt ::= Type IdDecl;

6 AssignStmt:Stmt ::= UseExpr Expr;

7

8 abstract Expr;

9 abstract UseExpr:Expr;

10 IntLiteral:Expr ::= <NUMERAL>;

11 Dot:UseExpr ::= Left:UseExpr Right:IdUse;

12 IdUse:UseExpr ::= <ID>;

13

14 abstract Type;

15 IntType:Type ::= <INT>;

16 StructType:Type ::= IdDecl;

17

18 IdDecl ::= <ID>;
Struct language abstract grammar.

4 2015/1/23



An example usage of the Struct language can be seen
below:

1 struct B {

2 int e;

3 }

4

5 struct A {

6 B b;

7 int d;

8 }

9

10 A a;

11 a.b.e = 5;

12 a.d = 44;
Struct language example code.

The functionality to analyze this language is not imple-
mented in the library. However in order to extend the library
with the ability to analyze this language new interfaces need
to be coded into the library. Because one of those interfaces
will be responsible for type analysis the library will require
a lot more information regarding the AST simultaneously,
such as both decl() and type() attributes. This poses a
problem as combining interfaces, although possible, has not
yet been evaluated and is not part of the library documenta-
tion.

Related Work
Name Binding Language NBL enables linguistic abstrac-
tions through declarative definitions of name binding and
scope rules [5, p.2]. It is a declarative language which aims
to generate name resolution rules defined in the Stratego
language. Integration with Spoofax Language Workbench[5,
p.14] is provided, with the possibility to extend existing lan-
guage constraint rules through manually written Stratego
rules[5, p.18].

The main difference between NBL and name analysis li-
brary is that we do not generate rules that are specified in a
pre-existing constraint rule defining language, which in this
case is Spoofax. Instead, the name analysis library already
implements the most common language rules, then provides
the programmer with interfaces to use them and attributes to
moderate them.

Conclusion
The purpose of this project is to assist the implementation of
the name analysis and explore the possibility of constructing
a library for this purpose. We believe that the current library
does this on a basic level. It implements only the fundamen-
tal name analysis. This could be useful for developers who
want to skip implementing name analysis. Alternatively it
can be used by students as an introduction to name analysis.

Future work would be to expand the library to cover more
cases. We had a Struct language which we implemented by
hand, but there was not enough time to implement it to the
library. After implementing the functionality in the Struct
language the next step might be classes, functions or type
analysis.

One could always improve the library by adding more func-
tions to the already existing interfaces e.g. scopes that are
more specific, which could be allowing the programmer to,
for example, define an attribute scopeType() which sets
the type the Scope interface represents. Thereby gaining
the ability to treat scopes differently, which could be useful
when the programmer wants different library behavior for
function statement scopes and if statement scopes.

There is also a need of changing the names of the attributes
and interfaces to match a better standard. The library re-
serves all the names that are used in the library and forces
the user to not use those names. This could create confusion
when there is a bug saying that an attribute already exists
when there are clearly no other attribute by that name. Since
the library reserves the name for the attributes it uses we
want the names to be consistent and not interfere too much
with the users choice of name.

The ultimate goal with this project would be to have a li-
brary that can be used for any construction of a complete
compiler for any language, and a name analysis library that
can analyze any language.

Acknowledgments
Niklas Fors for supervising us during the project.

References
[1] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner,

Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Di-
wan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer,
Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovik,
Thomas VanDrunen, Daniel von Dincklage, and Ben Wieder-
mann. Wake up and smell the coffee: Evaluation methodol-
ogy for the 21st century. Commun. ACM, 51(8):83–89, August
2008.

[2] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statis-
tically rigorous java performance evaluation. SIGPLAN Not.,
42(10):57–76, October 2007.

[3] Grel Hedin. An introductory tutorial on jastadd attribute gram-
mars. In JooM. Fernandes, Ralf Lmmel, Joost Visser, and Joo
Saraiva, editors, Generative and Transformational Techniques
in Software Engineering III, volume 6491 of Lecture Notes in
Computer Science, pages 166–200. Springer Berlin Heidelberg,
2011.

[4] U. Kastens and W.M. Waite. Modularity and reusability in
attribute grammars. Acta Informatica, 31(7):601–627, 1994.

5 2015/1/23



[5] Gabril D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, and
Eelco Visser. Declarative name binding and scope rules. In
Krzysztof Czarnecki and Grel Hedin, editors, Software Lan-
guage Engineering, 5th International Conference, SLE 2012,
Dresden, Germany, September 26-28, 2012, Revised Selected
Papers, volume 7745 of Lecture Notes in Computer Science,
pages 311–331. Springer, 2012.

6 2015/1/23


