
LR conflict demonstrator
Project in Computer Science – EDAN70

January 23, 2015

Daniel Eliasson Christian Olsson
Dept. of Computer Science, Lund University, Sweden

ada10del@student.lu.se christian.olsson86@gmail.com

Abstract
It can be difficult to resolve conflicts in a LR grammar. This tool
hopes to help alleviate this problem. The tool finds a string of
symbols leading up to a conflict in order to give an example of
something that is ambigous to the parser. We do this by building
a graph from the output dumped by the CUP parser generator and
doing a search from the start node of the graph to the conflict state,
generating a string of symbols.

1. Introduction
When you are writing a parser for a LR grammar it can be dif-
ficult to fix conflicts that appear. Most parser generators only tell
you which productions are in a conflict, what type of conflict that
occurs, and some additional information that can be hard to un-
derstand. This information is not enough to easily tell what kind
of input would be problematic for the parser and having such an
example input would make the conflict easier to resolve. What we
have created during this project is a tool that takes the output from
the CUP parser generator and from this finds an example string that
would cause a conflict when parsed by a LALR-parser [2]. The ex-
ample is a string of symbols that drives the parser to the conflict
state. The idea is that this will give the programmer more contex-
tual information leading up to the conflict.

The first step in using our tool is to dump the LR-graph from
CUP. Then our tool will parse the dump recreating the LR-graph.
Then we find a string of symbols that drive the parser to the conflict-
state. This becomes a common prefix of symbols that lead up to the
conflict. Later all symbols that are non-terminals could be expanded
to create a string of tokens. It’s later possible to turn tokens back
into strings. Putting together those strings creates an example input.

2. Background
2.1 LR-parsing
Using LR-parsing it’s possible to parse more grammars than using
LL-parsing. The reason for this is that LL(k)-parsing techniques
must predict which production to use after only having seen the first
k tokens of the right-hand side. LR(k)-parsing is able to defer that
decision until it has seen the entire right hand side of a production
and another k tokens following that [3, p. 55].

The crucial difference is that LR-parsers have a stack of symbols
and both the contents of the stack and the lookahead is used to
choose the production. The entire right hand side of a production
is put on to the stack before LR-parsers decide to choose that
production. This means that productions that have a unlimited
common prefix are not a problem for LR-parsers unlike LL-parsers.
Like LL-parsing techniques, LR-parsing also uses a table of actions

that describe what the parser should do. However, in a LR-parser
this table has a column for every symbol and a row for every state
in the LR-parser.

The LR-parser has a number of states. Each state contains a
number of LR items. Each LR item is a production that the LR
parser may be parsing in at this point. So each LR item is a
production augmented with a position marker on the right hand
side. So it has the form A → α1α2α3 . . . • β1β2β3 The
symbols to the left of the position marker α1α2α3 . . . are on the
top of the stack when the parser is in this state. When the LR-
parser reads in a token from the input and puts it on the stack
it transitions to another state. The states in a LR-parser and the
transitions between the states create a graph called the LR-graph.
The LR-graph is later used to fill the parsing table with actions [1].

All LR-conflicts arise when two actions are put in the same
position in the parsing table. However, the parser can only take one
action at a time so we have a conflict. The conflict is either a shift-
reduce or reduce-reduce conflict. A shift-reduce conflict occurs
when the parser can either shift a terminal α or reduce according to
a production that can be followed by α. Choosing one or the other
can have a desired effect. However, figuring out which one can be
difficult, especially as the error messages from parser generators are
difficult to parse for humans (hence the need for this tool.). Reduce-
reduce conflicts occur when the parser can match two productions,
both which can be followed by the same symbol α, so it doesn’t
know which one to choose. Most of these problems should not be
resolved by choosing one production over the other but by changing
the grammar [3, p. 68].

2.2 Some examples of LR-parser conflicts
There are a lot of ways that you can run into a LR conflict. One of
the more famous one that you might run into is the dangling else
problem where you have two nested if statements after which an
else clause follows. Depending on how exactly the grammar is de-
fined the else clause can belong to either of the two if statements.
If you’re not careful when writing the grammar you’ll get a shift-
reduce conflict. Most parser generators will break the tie by favor-
ing shift over reduce. In this case that means that the else clause will
belong to the closest if statement. This might be what you want (and
this is the case in C and Java) but you should make this explicit, by
changing the grammar or hinting to the parser generator to choose
shift.

In listing 2 we have en example of a very simple grammar with
a shift/reduce conflict. It is impossible for the parser to know if
Expr + Expr * Expr, should be interpreted as (Expr + Expr)
* Expr or Expr + (Expr * Expr). If you want the parser to
adhere to normal math precedence you will have to change your
grammar to reflect that or add precedence declarations.

mailto:ada10del@student.lu.se
mailto:christian.olsson86@gmail.com

Listing 1: Dangling else snippet

if (a)
if (b) foo();
else bar();

Listing 2: Simple grammar with shift/reduce conflict

Expr ::= Expr + Expr
Expr ::= Expr * Expr

In example 3 we have an example of a LALR(1)-grammar that
has a reduce/reduce conflict. This is an example of a conflict-free
LR(1) grammar that has a reduce/reduce conflict when used with a
LALR(1) parser generator. Choosing one production over the other
to resolve this will limit the LALR parser so that it cannot parse the
whole language that the grammar describes. The grammar can be
rewritten to be a conflict-free LALR(1)-grammar and our tool will
hopefully help find and fix this type of problem.

Listing 3: Reduce/reduce conflict.

S ::= a E c
::= a F d
::= b F c
::= b E d

E ::= e
F ::= e

2.3 CUP
For this project we are using the CUP parser generator1 to create
LR-graphs from CUP grammars. It is possible to change our pro-
gram to use an LR-graph from another source but for this project
we are using CUP.

We use a fairly simple grammar to parse the output from CUP
and with our program we can output the graph in .dot format or
do analysis on it. In order to find a conflict state we only need to
look at each state individually. In each state we look through the
LR-items to find conflicts.

In CUP it is possible to resolve some conflicts using precedence
rules. The advantage of this is that it makes it possible to write
an ambiguous grammar that feels more natural to read. This is
exceptionally useful in a language with expressions that include
many different operators. But the conflicts can still be found in
the LR-graph. It is when the LR-graph is converted to a parsing
table that the conflicts will be resolved according to the precedence
rules. This means that our tools will sometimes find conflicts in the
grammar that CUP already knows how to resolve.

When working with LR-graphs from CUP it is not rare to
come across a couple of special non-terminals. First there is the
$START non-terminal that represents the start production. But then
there are a couple of more mysterious non-terminals named NT$0,
NT$1, NT$2... that occur in seemingly arbitrary places. These non-
terminals are synthesized when semantic actions appear in the
middle of a production. For example the following production:

A ::= B {: foo(); :} C {: bar() :} D;

1 http://www2.cs.tum.edu/projects/cup/

Is transformed into:

A ::= B NT$0 C NT$1 D;
NT$0 ::= {: foo(); :};
NT$1 ::= {: bar() :};

3. Implementation
Our tool is implemented with the help of JastAdd and the parser
generator Beaver. We use Beaver to create a parser that can parse
the output from CUP’s dump states functionality to generate the
LR-graph. JastAdd is an aspect-oriented compiler construction sys-
tem. We use JastAdd to generate classes for an abstract syntax tree
to represent the LR-graph. It also allows us to use attribute gram-
mars and aspect oriented programming to add functionality to the
graph [5].

When there are conflicts in a grammar, CUP will generate a list
of these conflicts and also a summary at the end. Our scanner uses
two states that skips everything before and after the LALR-states.
Our representation of the LR-graph is basically a list of states where
each state has a list of transitions to other states and each transition
has an associated symbol with it. In other words this is basically an
adjacency list representation. Each state also has a list of LR-items
that we use to find conflicts.

Almost all the code is written as aspects as opposed to pure Java.
We have aspects that deal with doing breadth-first search (BFS),
finding conflicts, and outputting the graph in .dot format.

To find a conflict state all we need to do is to check each state
in turn for conflicts. To check a state for conflicts we build a map
from each symbol and follow the position marker to a list of the
items that have that symbol after the position marker. That way all
the LR-items that may cause a conflict are grouped together. If for
any symbol there is more than one associated LR-item, and at least
one of those LR-items is a reduce item, then there is a conflict.

To find a prefix to the conflict we choose one of the LR-items
involved in the conflict. In particular one that is a reduce item
(where the position marker is at the end of the production). Then
we trace backwards in the graph to find the set of states that we can
originate from when parsing in this production keeping note that
the lookahead of the items must also match. Finally we find using
BFS the shortest route from the start node to any of the set of nodes
we found. This gives us the path that we are looking for.

3.1 Example: prefix to dangling else in a LALR-graph
As an example have a look at figure 2. This a LALR-graph of a
grammar with the dangling else problem. There is a conflict in state
5 between the two items in that state. The first has the symbol ELSE
following the position marker. The second item has the position
marker at the end and it has that same symbol in its follow set.
This means that we have a shift-reduce conflict because we have
two possible actions. We can either shift ELSE onto the stack (first
item) or we can reduce the top of the stack into a IfStmt symbol.

To find out where we came from we first begin tracing back-
wards using the second item from state 5. What we want to do is to
find the set of states where we are at the beginning of that produc-
tion. To do this we maintain two sets: one set of all of the current
nodes C and one set of all the previous nodes P . Note that we are
searching backwards so the set of all previous nodes are the nodes
we are going to look at next.

In the beginning C only contains state 5 and the P is empty.
Looking at the item we see that the way we got to state 5 was to shift
Stmt onto the stack. So we look at each state in C for transitions
on the Stmt symbol from other nodes. We find state 4 and the next
step is to see if the item exist in this state with the ELSE symbol in
the follow set. We find that it is the first item in state 4 and so we

http://www2.cs.tum.edu/projects/cup/

add state 4 to P . Now there are no more nodes left so we assign P
to C and take another step backwards.

Now when C = {4}, we want to follow all Expr transitions
backwards. We find that P = {3} and continue wth the next round.
With C = {3} we have one more step backwards to take along IF
transitions. Here we find tree states: 0, 4, and 6. When looking at
state 0 we see that it has a production matching the one we are
following but it does not have ELSE in its follow set. This means
that going along the path 0→ 3→ 4→ 5 cannot cause the conflict
as it can not be followed by ELSE that is the cause of the conflict.
So state 0 is discarded. Next state 4 and 6 are both inspected and
added to P .

We have now found the set we were looking for: {4, 6}. Now
we use BFS to find a path from state 0 to any of these nodes and
find the path 0 → 3 → 4 and to that path we append the path that
we seached backwards along 4 → 3 → 4 → 5. This gives us the
resulting path: 0 → 3 → 4 → 3 → 4 → 5 and picking out the
symbols along the transitions we get the prefix to the conflict: IF
Expr IF Expr Stmt. Add in the position marker and the conflict
symbol and we get: IF Expr IF Expr Stmt (*) ELSE.

This may seem like an over complicated way of doing this. Our
initial approch was to run BFS from the start state to the conflict.
It appears that could work when using a LR-graph. But not when
using an LALR-graph like we get from CUP. The path we want to
find in the LALR-graph in figure 2 has a loop so we cannot find it
using only BFS.

4. Evaluation of Our Tool
In order to evaluate our tool we used a few different metrics to look
at different characteristics. Unfortunately we are not aware of any
similar tools to compare against but we hope the numbers will be
interesting nonetheless.

4.1 Lines of Code
To evaluate how much code we wrote we can divide the project into
two parts. The first part deals with parsing the LR-graph from CUP.
For this part we wrote a combined 91 lines of AST specification,
scanner rules, and AST production rules. The second part deals
with analyzing the LR-graph. For this part we wrote 702 lines of
code according to CLOC2.

4.2 Running Time
We also measured the running time of our tool in a few different
ways. In order to evaluate our tool we created a couple of different
grammars. We also downloaded a CUP implementation of the Java
1.5 grammar3. The Java 1.5 grammar was changed to introduce
a conflict (dangling else) for evaluation purposes. Some statistics
about the LR-graphs created from the different grammars we used
can be found in table 1. In order to measure the running time of the
program we used the guidelines outlined in the OOPSLA[4] article.
First we measured the start up performance: the time it takes for the
JVM to start up and load the required libraries. We then measured
the steady-state performance by making a loader class that ran the
main program multiple times in the same JVM invocation until the
coefficient of variation was less than 0.01 and then reported the
mean running time for the last 10 iterations. With both these ways
we ran the tests 30 times and computed a 95 % confidence interval.
The tests where run on a laptop with an i7-4700MQ Intel processor
using a SSD as a storage device.

2 http://cloc.sourceforge.net/
3 http://people.csail.mit.edu/jhbrown/Javagrammar/

Start-up time
0

2

4

6

·10−2

tim
e

(s
)

Running time after steady-state is reached for different grammars

Java 1.5 Else Expr

10−3

10−2

10−1

tim
e

(s
)

Running time after steady-state is reached for different grammars

As we can the running time time is quite acceptable even for a
large grammar lika Java.

4.3 Time Complexity
It takes O(n) = O(|V | + |E| + |L|) time to parse the LR-graph
from the CUP output where |V | is the number of states, |E| is the
number of transitions, and |L| is the number of LR-items. Because
|V | < |E| in a LR-graph and |L| can be assumed to be less
than k|V | where k is some constant, both time complexity and
space complexity are O(|E|). Because the whole graph needs to
be saved the space complexity is obviously the same. For an LR-
graph (V,E) the time complexity for doing a BFS search to find
the first state with an conflict is O(|E|) and the space complexity
is O(|V |). The time complexity for finding a conflict in a state
with K LR-items and with lookahead tokens of length at most L is
O(|K| · L). The number of lookahead tokens can’t be more than
the total number of terminals in the grammar. Because |K| and L
are both small we can ignore this cost and call the conflict finder
O(1). This means that both the time and space complexity for the
entire tool are O(|E|).

Testfile |V | |E| |E|
|V |

Else 14 21 1.5
Java15 1028 11473 11.2
Expr 18 33 1.8

Table 1: Table showing the sparseness of the graphs

4.4 User Friendliness
Our tool is a fairly easy to understand command line tool with
helpful error messages and a decent enough readme-file. It does

http://cloc.sourceforge.net/
http://people.csail.mit.edu/jhbrown/Javagrammar/

of course require some general knowledge about command line
interfaces and the tool assumes you know how to generate dump
files from CUP. The point of the tool is to give helpful knowledge
about conflicts so let us compare our tool’s output to how Beaver
and CUP report conflicts.

Listing 4: Beaver example

parser.beaver: Warning: Resolved Shift-Reduce conflict
by selecting (ELSE: SHIFT; goto 17) over (ELSE:
REDUCE stmt = IF expr.e stmts.s) using precedence.

Listing 5: CUP example

Warning : *** Shift/Reduce conflict found in state #383
between if_then ::= IF Expr Stmt (*)
and if_then_else ::= IF Expr Stmt (*) ELSE Stmt
under symbol ELSE
Resolved in favor of shifting.

Listing 6: Our tool

State 6 has a conflict. A prefix is:
IF Expr IF Expr Stmt ELSE

In this simple example grammar our tool is quite helpful but the
output becomes a bit unwieldy for larger grammars.

5. Related Work
The closest we could find is the ANTLRWorks tool4 that visualizes
ambiguities in an interesting way (see appendix 3). ANTLRWorks
is for LL-grammars so it has different conflicts and wouldn’t work
with Beaver or CUP. We are not aware of any related tools for LR
or LALR grammars.

6. Future Work
During this project we realized that some things were not as simple
as we thought, there were some things that we didn’t have time for,
and some things that were simply outside the scope of this project.

6.1 Generating a String of Terminals
When we first started we envisioned us first getting a string of
symbols and from that generate a string of terminals. During the
project we started questioning the use of doing this. We argued
that IF Expr IF Expr ELSE was easier to understand than trying
to expand the Expr into more concrete terms. Coming up with
a concrete example would also require us to look at the scanner
implementation.

After using our tool on the big Java 1.5 grammar however we
realized that a lot of the non-terminals could be “expanded” into
nothing. This would actually make the generated example easier
to understand. Finding out which non-terminals are nullable in this
way could produce examples which are a lot shorter as well.

6.2 Generating Parse-Trees
Generating the different parse trees would have been a helpful fea-
ture. That way you can easily see how the different interpretations
of the LR-graph affects the outcome. Another thing related to this
is that we could extract a smaller grammar that still contains the
conflict. That grammar would contain only the parts needed for the
parse tree to visualize the conflict.

4 http://www.antlr3.org/works/

6.3 Handle Multiple Conflicts
While our program can find and print out which states have con-
flicts, it cannot print a common prefix for multiple conflicts. This
one is a bit tricky since we are not sure exactly how the conflicts
interact if there are multiple conflicts in the LR-graph.

7. Conclusions
During this project we have implemented a tool that can find a
common prefix for a LR-conflict. It does this by finding a path
to the closest conflict and adding the symbols associated with the
transitions to the prefix string. A large problem we encountered
during the project was the difference between LR- and LALR-
graphs. In order to solve this we had to use a workaround which
you can read about in section 3.

There were some things that unfortunately was outside the
scope of this project which you can read about in Future Work.
An unfortunate problem we did not manage to solve was that the
prefix string becomes very long for large grammars. The problem
could be alleviated if we could get rid of nullable terminals but we
felt that that was outside the scope of this project.

We implemented a fast and efficient tool that we hope is helpful
for anybody who writes parsers using CUP.

Acknowledgments
We would like to thank Jesper Öqvist for his helpful suggestions
and for pushing us to start writing the report early.

References
[1] On the translation of languages from left to right. Information and

Control, 8(6):607–639, 1965. ISSN 0019-9958. .
[2] T. Anderson, J. Eve, and J. Horning. Efficient lr (1) parsers. Acta

Informatica, 2(1):12–39. ISSN 00015903.
[3] A. W. Appel. Modern Compiler Implementation in Java. Cambridge

University Press, 2nd edition, 2002.
[4] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java

performance evaluation. SIGPLAN Not., 42(10):57–76, Oct. 2007.
ISSN 0362-1340.

[5] G. Hedin and E. Magnusson. Jastadd-an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37–58.

http://www.antlr3.org/works/

A. Appendix

S12
IfStmt -> "if" Expr Stmt "else" Stmt . [$]

S5
IfStmt -> "if" Expr . Stmt [$]
IfStmt -> "if" Expr . Stmt "else" Stmt [$]
+ IfStmt -> . "if" Expr Stmt ["else"]
+ Stmt -> . IfStmt [$]
+ Stmt -> . IfStmt ["else"]
+ IfStmt -> . "if" Expr Stmt "else" Stmt ["else"]
+ IfStmt -> . "if" Expr Stmt "else" Stmt [$]
+ IfStmt -> . "if" Expr Stmt [$]

S7
Stmt -> IfStmt . [$]
Stmt -> IfStmt . ["else"]

IfStmt

S6
IfStmt -> "if" . Expr Stmt ["else"]
IfStmt -> "if" . Expr Stmt "else" Stmt ["else"]
IfStmt -> "if" . Expr Stmt "else" Stmt [$]
IfStmt -> "if" . Expr Stmt [$]

"if"

S8
IfStmt -> "if" Expr Stmt . "else" Stmt [$]
IfStmt -> "if" Expr Stmt . [$]

Stmt

S14
IfStmt -> "if" Expr Stmt "else" Stmt . ["else"]
IfStmt -> "if" Expr Stmt "else" Stmt . [$]

S4
S' -> Stmt $. [$]

S11
IfStmt -> "if" Expr Stmt . ["else"]
IfStmt -> "if" Expr Stmt . "else" Stmt ["else"]
IfStmt -> "if" Expr Stmt . "else" Stmt [$]
IfStmt -> "if" Expr Stmt . [$]

S13
IfStmt -> "if" Expr Stmt "else" . Stmt ["else"]
IfStmt -> "if" Expr Stmt "else" . Stmt [$]
+ IfStmt -> . "if" Expr Stmt ["else"]
+ Stmt -> . IfStmt [$]
+ Stmt -> . IfStmt ["else"]
+ IfStmt -> . "if" Expr Stmt "else" Stmt ["else"]
+ IfStmt -> . "if" Expr Stmt "else" Stmt [$]
+ IfStmt -> . "if" Expr Stmt [$]

"else"

S10
IfStmt -> "if" Expr Stmt "else" . Stmt [$]
+ IfStmt -> . "if" Expr Stmt [$]
+ IfStmt -> . "if" Expr Stmt "else" Stmt [$]
+ Stmt -> . IfStmt [$]

Stmt

S2
IfStmt -> "if" . Expr Stmt [$]
IfStmt -> "if" . Expr Stmt "else" Stmt [$]

"if"

S3
Stmt -> IfStmt . [$]

IfStmt

S1
S' -> Stmt . $ [$]

$

S9
IfStmt -> "if" Expr . Stmt ["else"]
IfStmt -> "if" Expr . Stmt "else" Stmt ["else"]
IfStmt -> "if" Expr . Stmt "else" Stmt [$]
IfStmt -> "if" Expr . Stmt [$]
+ IfStmt -> . "if" Expr Stmt ["else"]
+ Stmt -> . IfStmt [$]
+ Stmt -> . IfStmt ["else"]
+ IfStmt -> . "if" Expr Stmt "else" Stmt ["else"]
+ IfStmt -> . "if" Expr Stmt "else" Stmt [$]
+ IfStmt -> . "if" Expr Stmt [$]

Expr

"else"

StmtIfStmt

"if"

Expr

S0
S' -> . Stmt $ [$]
+ IfStmt -> . "if" Expr Stmt [$]
+ IfStmt -> . "if" Expr Stmt "else" Stmt [$]
+ Stmt -> . IfStmt [$]

Stmt"if"IfStmt

Stmt

IfStmt

"if"

Figure 1: LR-graph for example grammar with dangling else. Gener-
ated by Jesper Öqvist’s LR-parser.

State 0
IfStmt ::= (*) IF Expr Stmt {EOF }
$START ::= (*) Stmt EOF {EOF }

IfStmt ::= (*) IF Expr Stmt ELSE Stmt {EOF }
Stmt ::= (*) IfStmt {EOF }

State 3
IfStmt ::= IF (*) Expr Stmt {EOF ELSE }

IfStmt ::= IF (*) Expr Stmt ELSE Stmt {EOF ELSE }

IF

State 2
Stmt ::= IfStmt (*) {EOF ELSE }

IfStmt

State 1
$START ::= Stmt (*) EOF {EOF }

Stmt

State 4
IfStmt ::= IF Expr (*) Stmt {EOF ELSE }
IfStmt ::= (*) IF Expr Stmt {EOF ELSE }

IfStmt ::= IF Expr (*) Stmt ELSE Stmt {EOF ELSE }
IfStmt ::= (*) IF Expr Stmt ELSE Stmt {EOF ELSE }

Stmt ::= (*) IfStmt {EOF ELSE }

Expr

State 8
$START ::= Stmt EOF (*) {EOF }

EOF IF

IfStmt

State 5
IfStmt ::= IF Expr Stmt (*) ELSE Stmt {EOF ELSE }

IfStmt ::= IF Expr Stmt (*) {EOF ELSE }

Stmt

State 6
IfStmt ::= (*) IF Expr Stmt {EOF ELSE }

IfStmt ::= IF Expr Stmt ELSE (*) Stmt {EOF ELSE }
IfStmt ::= (*) IF Expr Stmt ELSE Stmt {EOF ELSE }

Stmt ::= (*) IfStmt {EOF ELSE }

ELSE

IF

IfStmt

State 7
IfStmt ::= IF Expr Stmt ELSE Stmt (*) {EOF ELSE }

Stmt

Figure 2: LALR-graph for example grammar with dangling else. Gen-
erated by our tool.

Figure 3: ANTLRWorks visualization of an ambigous path5

5 http://www.antlr3.org/works/screenshots/ambiguouspath.
jpg

http://www.antlr3.org/works/screenshots/ambiguouspath.jpg
http://www.antlr3.org/works/screenshots/ambiguouspath.jpg

	Introduction
	Background
	LR-parsing
	Some examples of LR-parser conflicts
	CUP

	Implementation
	Example: prefix to dangling else in a LALR-graph

	Evaluation of Our Tool
	Lines of Code
	Running Time
	Time Complexity
	User Friendliness

	Related Work
	Future Work
	Generating a String of Terminals
	Generating Parse-Trees
	Handle Multiple Conflicts

	Conclusions
	Appendix

