A SimpliC compiler in Scala and Kiama

Project in Computer Science — EDAN70
January 15, 2015

Johan Andersson

D10, Lund Institute of Technology
johan.andersson.734@student.lu.se

Abstract

JastAdd and Kiama are both tools that support working with at-
tribute grammars in compiler construction. JastAdd is a tool that
generates Java code, while Kiama is a Scala library.

In this project, a compiler was created for a simple C-like
language, using Kiama and Scala. A compiler for this language has
previously been implemented, but instead using JastAdd.

These two compilers were then evaluated in terms of code size
and performance, to see how well they performed. The goal of
this project was to compare Kiama with the more widespread tool
JastAdd.

1. Introduction

The goal of this project was to implement a compiler for the Sim-
pliC language, using Scala and the attribute grammar library Kiama
[1], and compare it to another compiler for the same language. This
other compiler has previously been implemented using the attribute
grammar tool JastAdd [2]. The JastAdd compiler was created in
the EDANG65 Compilers course at Lund University [3]. The com-
parison was done in terms of runtime performance and size of the
respective code bases.

SimpliC is a simple C-like language, with support for functions,
integer variables and constants, while-loops, simple conditionals,
but not more advanced features. Booleans, logical *or’, and logical
’and’ are for example not part of the language. A SimpliC example
program for calculating factorials can be seen in Listing 1.

Listing 1. A SimpliC example program

int factorial (int x){

if (x == 0){

return 1;
}else{

return x x factorial(x — 1);
}

}

int main(){
int n = read();
print(factorial(n));

A related paper worth mentioning is *A pure embedding of at-
tribute grammars’[4], which describes the attribute grammar library
Kiama. The paper compares Kiama with JastAdd. They find that
while Kiama has a briefer syntax, it is also the slower of the two.
When evaluating the code specification size in this project, the re-
sults were similar; the Kiama compiler needed fewer lines of code.
But when doing a performance evaluation, the results were not the

same as in previous work. The Kiama compiler seemed to have a
better time complexity than the JastAdd compiler when tested on a
sample program..

2. Attribute Grammars

Attribute grammars decorates abstract syntax trees with attributes.
[7] The values of the attributes are specified with equations. These
equations are unordered, and automatically computed by an evalu-
ation engine.

Originally there were two types of attributes: Synthesized at-
tributes and inherited attributes. However, nowadays there are more
attributes that are supported by both JastAdd and Kiama. Circular
and parameterized attributes are two examples of this. Collection
attributes is another type of attribute that is supported by JastAdd,
but not by Kiama.

The synthesized attributes have their equations defined in the
same node of the abstract syntax tree as the attribute is defined
in, while inherited attributes have their equations defined in an
ancestor.

An attribute can be circular in its definition, i.e. it depends
on itself. The value of the attribute will then be computed using
fixed-point iteration. Circular attributes must be explicitly declared
circular in both Kiama and JastAdd.

A collection attribute is defined by a set of contributions instead
of an equation. A parameterized attribute takes parameters.

After the value of an attribute is computed, it is cached, so that
it does not have to be recalculated multiple times. The value of an
attribute is always the same and does not change.

3. Scala and Kiama

Scala stands for ’Scalable Language’ and is a language that com-
bines object-oriented and functional programming. It is compiled
to bytecode that is executed on the Java Virtual Machine (JVM).
This means that Scala can use Java libraries, and it should be pos-
sible to use JastAdd together with Scala.

3.1 Scanning

A Scala library has been used that parses on a character level, which
means that no explicit scanning of the input is required. This is
often called ”Scannerless parsing” [9]. The JastAdd compiler uses
JFlex for scanning. [5]

3.2 Parsing

In this project, the Scala PackratParser class was used. It is a
part of the Scala standard library. As this is standard Scala parsing,
it will not be discussed in detail here, but an example comparison of
the parsing used in the JastAdd and Kiama compilers are provided

in Listing 2 and 3. The JastAdd compiler uses the parser generator
Beaver [6] for parsing.

Listing 2. Simple parsing in Beaver syntax

if_stmt = IF LPAREN expr.a RPAREN LBRACKET
block .b RBRACKET else_clause.c
{: return new IfStmt(a, b, c); :}

Listing 3. Simple parsing in Scala syntax

lazy val ifStmt PackratParser [IfStmt]

= "if” 7> (7(7 "> expr < 7)”) T ("{” > block < "}7”)

(elseClause?) "* { case a ~ b ~ ¢ =
IfStmt(a, b, ¢) }

3.3 Abstract Syntax Trees and Attributes

In JastAdd, attributes are specified using a special language in .jrag-
files, and then JastAdd generates Java code from these specifica-
tions. The classes representing the abstract syntax tree are also de-
fined using a special language.

In Kiama however, normal scala classes represent the nodes of
the abstract syntax tree, and the attributes are defined as normal
Scala functions. This means that there is no new syntax added in
Kiama. Snippets of abstract syntax tree definitions can be seen in
Listing 4 and 5.

Listing 4. AST definition syntax using JastAdd

abstract Stmt;
abstract Expr;
AssignStmt : Stmt
IdUse : Expr

IdUse Expr;
<ID: String >;

Listing 5. AST definition syntax using Scala

abstract class Stmt extends LangNode

abstract class Expr extends LangNode

case class AssignStmt (idUse IdUse, expr : Expr)
extends Stmt

case class IdUse (name String) extends Expr

To define an attribute using Kiama, the attr function is used.
Parameterized attributes and circular attributes are defined in a sim-
ilar manner using the paramattr and circular functions. Exam-
ple implementations of the attribute isUnknownType in JastAdd
and Kiama can be seen in Listings 6 and 7. isUnknownType is an
attribute that takes a Type (e.g an integer or boolean type) and re-
turns true if the given type is unknown. The unknown type is used
for undeclared variables, among other things.

Listing 6. Definition of isUnknownType using Kiama

lazy val isUnknownType Type => Boolean =

attr {
case unknownType UnknownType =>
true
case _ => false
}

Listing 7. Definition of isUnknownType using JastAdd

syn boolean Type.isUnknownType() = false;
eq UnknownType.isUnknownType () = true;

4. Implementation details

The two language tools were used to implement attributes for
semantic analysis, reachability analysis, pretty printing and code
generation for SimpliC. An overview of the implemented features
of the compilers can be seen in Table 1.

The semantic analysis consisted of name analysis and type anal-
ysis. The name analysis in turn consisted of attributes for checking
for undeclared variables, multiply declared variables, and functions
with the same name as reserved functions among other things.

The type analysis had functionality for checking if a boolean
value is assigned to an integer variable, a function parameter is
called with the wrong type, there is a non-boolean value in a
boolean expression, the return type is correct, and if a variable is
incorrectly called as a function.

The reachability analysis consists of checking what functions
are reachable from a given function. This entails following the
function calls of the function. Because functions can be recursive,
this definition is circular, and the corresponding attribute in the
compiler is also circular.

This is implemented as the reachable attribute, which de-
pends on another attribute, functionCalls, that returns all the
function calls of the function declaration. In the JastAdd Compiler,
functionCalls could be implemented using collection attributes.
However, as this is not supported in Kiama, the attribute had to be
implemented in another way in the corresponding compiler.

Table 1. Implemented compiler features

JastAdd compiler Kiama compiler
Explicit scanning
Parsing
Semantic analysis
Reachability analysis
Pretty printing
Visitor interface
Interpreter
Code generation

Machine code generation was implemented in both compilers,
but the target language were not the same. The reason for this was
mainly to make as much use of Kiama as possible. Kiama has a
class called AbstractMachine that can be used to create various
machine emulators.

Several of the example projects on the Kiama web page involved
code generation, and they all had the same target language. It
is a certain kind of RISC, code, defined in the book ’Compiler
Construction’ by Niklaus Wirth [10]. To run this code, you also
need a machine. This was also provided in the Kiama examples,
namely a RISC code machine emulator. This was used in the Kiama
compiler.

In the JastAdd project, x86 assembly was the target code. It does
not matter too much that these two types of code are different from
each other, because code generation is not the main focus of this
project. Code optimization was outside the scope of this project.

Because a Scala parsing library that has scannerless parsing was
used, no explicit parsing had to be implemented for the Kiama
compiler.

5. [Evaluation

The compilers were evaluated by comparing their runtime perfor-
mance and specification size.

5.1 Performance

To evaluate the runtime performance of the two attribute grammar
systems, the errors-attribute was measured. The purpose of the

Figure 1. runtime performance comparison

2500

== Kiama
== JastAdd

2000

Milliseconds
-
w
o
o

=
o
o
o

500

0 5000 10000

15000 20000

Lines of code

errors attribute is to find and collect any errors in the scanned
and parsed program. Errors include but are not limited to: unde-
clared variables, multiply declared variables, declarations of re-
served functions (print, read), assignment of a boolean value to an
integer variable and function parameter mismatches. Exactly the
same analysis and error checking are implemented in the two com-
pilers to ensure a fair comparison.

For each compiler, a number of programs were ran, and the
time it took to evaluate the attribute was invoked. 20 programs of
different length were evaluated. They were similar in nature, and
they all consisted of a single code snippet that was repeated to
create a program of the preferred length. The size of the programs
ranged from 1000 to 20000 lines of code in increments of 1000
lines of code. The original code snippet was 100 lines long and
consisted of a number of functions that were called by a main
function. Several errors were present in these functions.

Each data point, i.e. each program, was measured 30 times
for each compiler. Only the errors-attribute was measured, no
scanning, parsing or anything like that was measured. The results
can be seen in Figure 1.

Regarding the performance evaluation results; if we look at
Figure 1, we see that JastAdd is faster up to an input of 7000 lines
of code, and then Kiama is the faster one for input with 8000 lines
of code or more.

This is unexpected. Previous work suggests that JastAdd should
be significantly faster than Kiama [4]. Why Kiama is faster in this
comparison is not entirely clear. It probably has something to do
with the implementation of the JastAdd compiler. Either that, or
it is caused by the test program used for the evaluation. The test
program could be some sort of special case that is better suited for
Kiama than JastAdd, but that is not very likely.

5.2 Code size

The two compilers were also evaluated with respect to their number
of lines of code. This evaluation was done with the tool ’cloc’ [8].
Cloc counts the number of lines of programs, excluding comments

and empty lines. It supports many languages out of the box, but not
Jjrag-files by default. So the JastAdd-related files had their lines of
code counted as Java files.

The results are listed in Figure 2. The goal of this project was
to compare attribute grammar tools, so it is interesting to look at
the total number of lines of code without any scanning or parsing
included since they are not a part of attribute grammars.

If we look at the comparison of the code sizes, we can see that
the Kiama compiler has less lines of code in total. But reachabil-
ity analysis and the abstract grammar specification has more lines
of code in the Kiama implementation. The abstract grammar con-
tains more boilerplate code here, so naturally it will have a larger
source code than in the JastAdd compiler, which has a very brief
corresponding implementation.

As for the reachability analysis; the results here probably de-
pend on the fact that the JastAdd implementation uses collection
attributes. As this is not supported in Kiama, this analysis had to be
implemented in another way.

However, Kiama has much more terse pretty printing than Jas-
tAdd in this project. A contributing factor to this might be that the
Kiama compiler have built-in functions represented in another way.
The functions are created in an attribute, predefinedFunctions,
while in the JastAdd compiler they are defined as separate classes
and thus require slightly more code. The main factor here is proba-
bly the Scala syntax though.

These results show some of the positive aspects of working with
Scala and Kiama, namely the syntax. Scala has less boilerplate
code than Java, and Kiama does not introduce much new syntax,
so it is very easy to work with. However, the way that the abstract
grammar is specified using JastAdd uses even less code than Scala
uses, which makes it easier to get a good overview over the abstract
grammar.

Table 2. Source code size comparison
JastAdd Kiama

Scanning 86 -
Parsing 52 -
canning + Parsing - 75
Abstract grammar 37 54
Semantic analysis 251 216
Reachability analysis 19 54
Pretty printing 143 46
Tree dumping 24 31
Code generation 282 295
Total (parsing/scanning included) 894 771
Total (parsing/scanning excluded) 756 696

6. Conclusion

In this project, a compiler for a simple C-like language was im-
plemented using the Scala attribute grammar library Kiama. It was
then compared to another compiler for the same language that had
been implemented using JastAdd.

‘When compared to each other, it was found that the Kiama com-
piler had the smallest specification size, and had a better runtime
performance after a certain input size. The performance evaluation
results contradict the results of previous work, and the cause for
this is unclear. Maybe a future project could find the reason why.
Another suggestion for future work is to use more test programs to
compare the two compilers in this project, and to compare them in
more detail.

References

[1] AM Sloane, Lightweight Language Processing in Kiama, Proceedings
of the 3rd international summer school conference on Generative and
transformational techniques in software engineering III, 2009

[2] T Ekman, G Hedin, The JastAdd system modular extensible compiler
construction, Science of Computer Programming 69(1-3), 2007

[3] EDANG65 Compilers course, http://cs.Ith.se/edan65

[4] AM Sloane, LCL Kats, E Visser: A pure embedding of at-

tribute grammars. Science of Computer Programming 78 (10), 2011
http://wiki.kiama.googlecode.com/hg-history/v1.2.0/papers/SCP11.pdf

[5] G Klein, S Rowe, R Dcamps, Jflex-the fast scanner generator for java,
online source, 2001, http://jflex.de/

[6] Beaver a LALR Parser Generator, http://beaver.sourceforge.net

[7] G Hedin, An Introductory Tutorial on JastAdd Attribute Grammars,
Springer Berlin Heidelberg, 2011

[8] A Danial, CLOC—Count lines of code, 2009,
http://cloc.sourceforge.net/

[9] E Visser, Scannerless generalized-LR parsing, Technical Report P9707,
in: Programming Research Group, University of Amsterdam, 1997

[10] N Wirth, Compiler Construction. Addison-Wesley, 1996.
http://www.cs.inf.ethz.ch/ wirth/books/CompilerConstruction/

