

L0.1109/EM

8

EMBC) | 978-1-

the

Using Operative Reports to Predict Heart Transplantation Survival*

Marcus Klang¹, Daniel Diaz², Dennis Medved³, Pierre Nugues⁴, and Johan Nilsson⁵

Background

- Heart transplant
- Operation report and data
- Prior work

Abstract-Heart transplantation is a difficult procedure comtransplantation is documented by an important number of pared with other surgical operations, with a greater outcome medical analyses and reports. The aim of all these procedures uncertainty such as late rejection and death. We can model is to reduce the initial uncertainty on the patient survival and the success of heart transplants from predicting factors such mitigate the risks with a personalized follow-up [3]. as the age, sex, diagnosis, etc., of the donor and recipient. Nonetheless, while essential to the treatment, the data Although predictions can mitigate the uncertainty on the transplantation outcome, their accuracy is far from perfect. In collected from the donor, the patient, and the operation are this paper, we describe a new method to predict the outcome sometimes difficult to bring together, even for specialists. of a transplantation from textual operative reports instead of Algorithms can help in the decision process, as for instance traditional tabular data. We carried out an experiment on 300 to assess the compatibility of an organ and a patient [3] or to surgical reports to determine the survival rates at one year predict the survival rate from characteristics from the donor and five years. Using a truncated TF-IDF vectorization of the texts and logistic regression, we could reach a macro F1 of and the recipient [10, 9]. 59.1%, respectively, 54.9% with a five-fold cross validation. To the best of our knowledge, in heart transplantation, While the size of the corpus is relatively small, our experiments these decision support algorithms only use numerical or show that the operative textual sources can discriminate the categorical data as input. They then ignore the textual reports transplantation outcomes and could be a valuable additional as data sources although these reports form an important input to existing prediction systems. component of the medical analyses and a significant infor-Clinical relevance-Heart transplantation involves a signifimation source in the manual determination of the treatment procedure.

cant number of written reports including in the preoperative examinations and operative documentation. In this paper, we show that these written reports can predict the outcome of the transplantation at one and five years with macro F1s of 59.1% and 54.9%, respectively and complement existing prediction methods. I. INTRODUCTION

Heart transplantation has enabled the survival of patients addition, we determined the most predictive words and we with advanced or terminal heart diseases. While now wellextracted them from the reports, paving the way to outline mastered with thousands of operations performed annually the most relevant parts of a text. worldwide, heart transplants are still heavy operations with The Ethics Committee for Clinical Research at Lund relatively uncertain outcomes compared with other more University, Sweden, approved the study protocol. The data routine operations. As of today, the 1-year survival is of was anonymized and de-identified prior to analysis and 91% and the median survival is of 12 to 13 years [5], the institutional review board waived the need for written with relatively important variations across the transplantation informed consent from the participants. sites, while the 10-year survival rate is of 71% in Sweden II. PREVIOUS WORK [7].

In addition to being a complex surgery operation, heart transplantation also involves significant preoperative, careintensive, and follow-up treatments. In contrast to milder diseases such as, for instance, seasonal influenza, a heart

Council, registration number 2021-04533.

- *This work was partially supported by the Heart Lung Foundation, registration number 2019-0623 and Vetenskaprådet, the Swedish Research
- ¹Marcus Klang is with the Department of Computer Science, Lund University, Lund, Sweden marcus.klang@cs.lth.se
- ²Daniel Diaz did this work while at the Department of Computer Science, Lund University, Lund, Sweden daniel.diaz.guilez@alumnos.upm.es
- ³Dennis Medved is with the Medicine Faculty, Lund University, Lund, Sweden dennis.medved@med.lu.se
- ⁴Pierre Nugues is with the Department of Computer Science, Lund University, Lund, Sweden pierre.nugues@cs.lth.se
- ⁵Johan Nilsson is with the Department of Translational Medicine, Thoracic Surgery and Bioinformatics, Lund University and Skåne University Hospital, Lund, Sweden johan.nilsson@med.lu.se

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0

In this paper, we describe a corpus of preoperative and operative reports and how we used them to predict the survival outcome of heart transplants. We show that text is useful in the prediction of survival rates at one and five years with macro F1s of 59.1% and 54.9%, respectively. In

Previous studies on the prediction of transplantation outcomes for different organs include liver, using a variety of methods, such as logistic regression, multilayer perceptron, and transformers [11], kidney, using Cox regression [13], as well as heart transplantation, using logistic regression, neural networks, or deep learning techniques [15, 10, 9]. As predictors, most studies used biological data in a numerical or categorical format.

In this paper, we considered the text of operative reports as input and the survival of the patient one year and five years after transplantation as output. We can then frame the outcome prediction as a text categorization problem: Whether the patient has survived or not one year, respectively five years, after her/his operation.

Text categorization has been applied in many applications, including spam detection, sentiment analysis, movie or

Dataset

- 472
- 3 text features
- 3 numeric features

Opber Diagnoser 0pkoder op_year SEX age dead d_SURV_TIME STERNUM_COMPL STROKE_COMPL RESPIRATOR_COMPL DIALYS_COMPL CIRKUNDERSTOD_COMPL ECM0_COMPL IMPL_PACEMAKER_COMPL PNEUMONI_COMPL LOS mortality_30d mortality_1y mortality_3y had_compl clean_text num_words dtype: object

object object object Int64 object int64

Preprocessing

- Tokenize
- TFIDF
- Bert embeddings

Preprocessing

• Tokenize

• **TFIDF**

• Bert embeddings

Model

- Random Forest
- Logistic Regression
- Fine-tuning Bert

Model

- Random Forest
- Logistic Regression
- Fine-tuning Bert

Techniques

- Oversampling
- Feature addition
- Cross validation
- Grid search

param_grid = {

'preprocessing_text_max_features': [50,200,500], 'preprocessing__third__max_features': [10, 50], 'classifier__C': [0.01, 0.1, 1.0, 10.0, 30], 'classifier__class_weight': ['balanced', None],

```
'preprocessing_text_ngram_range': [(1, 1), (1, 2)],
'preprocessing__secondtext__max_features': [10, 50],
'preprocessing__secondtext__ngram_range': [(1, 1), (1, 2)],
'preprocessing_third_ngram_range': [(1, 1), (1, 2)],
'sampler__sampling_strategy': [0.1, 0.2, 0.3,0.4,0.5],
'classifier__max_iter': [x for x in range(100, 1000, 200)],
```

Evaluation metrics

- F1-macro
- AucRoc
- Optimized for F1-macro

Mortality 30 days

Features Used

clean_text

clean_text + Diagnoser

clean_text + Opkoder

 $clean_text + Sex$

clean_text + age

clean_text + num_words

clean_text + opkoder + sex

clean_text + opkoder + age

clean_text + opkoder + num_words

clean_text + opkoder + diagnoser

F1 Macro	ROC AUC
0.719	0.802
0.678	0.806
0.749	0.772
0.719	0.789
0.673	0.824
0.702	0.767
0.735	0.761
0.712	0.849
0.719	0.774
0.678	0.798

Mortality 1 year

Features Used	F1 Macro	ROC AUC
clean_text	0.613	0.592
clean_text + diagnoser	0.621	0.542
clean_text + opkoder	0.622	0.609
clean_text + sex	0.595	0.598
clean_text + age	0.610	0.637
clean_text + num_words	0.621	0.613
clean_text + opkoder + sex	0.618	0.555
clean_text + opkoder + age	0.616	0.748
clean_text + opkoder + num_words	0.631	0.601
clean_text + opkoder + diagnoser	0.616	0.614
clean_text + opkoder + num_words + sex	0.614	0.591
clean_text + opkoder + num_words + age	0.633	0.770
clean_text + opkoder + num_words + diagnoser	0.6132	0.6936
clean_text + opkoder + num_words + age + sex	0.638	0.733
clean_text + opkoder + num_words + age + diagnoser	0.602	0.712

Mortality 3 years

Feature Combination

clean_text clean_text + Diagnoser clean_text + Opkoder $clean_text + SEX$ $clean_text + age$ clean_text + num_words $clean_text + opkoder + sex$ clean_text + opkoder + age clean_text + opkoder + num_words clean_text + opkoder + diagnoser clean_text + opkoder + diagnoser + sex clean_text + opkoder + diagnoser + age clean_text + opkoder + diagnoser + num_words

F1 Macro	ROC AUC
0.566	0.581
0.583	0.606
0.601	0.562
0.538	0.603
0.550	0.666
0.525	0.598
0.578	0.610
0.609	0.696
0.581	0.585
0.618	0.555
0.59	0.57
0.59	0.72
0.59	0.59

Length of Stay (LOS) less than 25 days

Features Used

clean_text

clean_text + Diagnoser

clean_text + Opkoder

 $clean_text + op_year$

 $clean_text + SEX$

 $clean_text + age$

clean_text + num_words

 $clean_text + num_words + SEX$

clean_text + num_words + age

clean_text + num_words + Diagnoser

clean_text + num_words + Opkoder

F1 Macro	ROC AUC
0.647	0.711
0.619	0.677
0.636	0.676
0.628	0.693
0.628	0.681
0.594	0.727
0.647	0.708
0.629	0.698
0.595	0.726
0.618	0.686
0.638	0.672

Had complication

Features Used

clean_text

 $clean_text + sex$

 $clean_text + age$

clean_text + num_words

clean_text + diagnoser

clean_text + opkoder

clean_text + opkoder + sex

clean_text + opkoder + age

clean_text + opkoder + num_words

clean_text + opkoder + diagnoser

F1 Macro	ROC AUC
0.580	0.606
0.579	0.592
0.582	0.639
0.574	0.608
0.606	0.606
0.617	0.616
0.613	0.611
0.613	0.611
0.613	0.610
0.606	0.611

Conclusion:

- Operation report very strong for short term for survival
- Best model: Morality 30 days
- Future work

ITH

FACULTY OF ENGINEERING