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Diffusion mo



tion: Reconstruction problem

@ Classical robotics problem.
o Accurate 3D reconstruction is essential for spatial understanding.

e Sensor noise and environmental interference degrade point clouds.
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Figure 1: Examples of 3D reconstruction [Williams et al., 2021]
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Motivation: Point Cloud Denoising

e Noisy reconstructions impair downstream tasks like recognition,
and planning.

@ Denoising is critical for robust robotic perception.

o We evaluate P2P-Bridge, a diffusion-based denoising model.
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Figure 2: Noisy vs. denoised point clouds [Wang et al., 2024]
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Previous Work

e Signal-based methods: Outliers removal using low-pass filters.
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Previous Work

e Signal-based methods: Outliers removal using low-pass filters.

e Optimization-based methods: Local neighborhood
optimization.
e Deep learning methods: Learn point-wise displacements,
e Iterative-PFN

o PD-Flow
o Diffusion models: Gradually denoise in steps.

o P2P-Bridge
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Problem formulation
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Figure 3: Visualization of optimal transport[Peyré and Cuturi, 2020]
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Figure 3: Visualization of optimal transport[Peyré and Cuturi, 2020]

o Clean point cloud P = {z;} € RM*3 (Blue points)
e Noisy point cloud P = {i;} € RVN*3 (Red points)
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Problem formulation

Figure 3: Visualization of optimal transport[Peyré and Cuturi, 2020]

o Clean point cloud P = {z;} € RM*3 (Blue points)
e Noisy point cloud P = {i;} € RVN*3 (Red points)
e Model fy(z)

e Diffusion step xiy1 = x¢ + fo(x¢)
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Problem formulation

Figure 3: Visualization of optimal transport[Peyré and Cuturi, 2020]

Clean point cloud P = {z;} € RM*3 (Blue points)
Noisy point cloud P = {#;} € RV*? (Red points)
Model fy(z)

e Diffusion step xiy1 = x¢ + fo(x¢)

Kullback Leibler divergence (KL)
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Schrodingers bridge

dx,} = [f(xtl,t) dt + gQ(t)Vlog \I/t(x,})] dt + g(t) dwy X0 ~ pdata (1)
ax? = [£(x2,1) dt — 2(1)V log Ws(x)| dt + g(t) AWt Xt ~ Pprior (2)

[Vogel et al., 2024]

e w; is a Wiener process. (White noise)

Diffusion models for denoising point clouds



Schrodingers bridge

dx,} = [f(xtl,t) dt + gQ(t)Vlog \I/t(x,})] dt + g(t) dwy X0 ~ pdata (1)
ax? = [£(x2,1) dt — 2(1)V log Ws(x)| dt + g(t) AWt Xt ~ Pprior (2)

[Vogel et al., 2024]

e w; is a Wiener process. (White noise)

o f(z,t) is a vector-valued function known as the drift.

Diffusion models for denoising point clouds



Schrodingers bridge

dx,} = [f(xtl,t) dt + gQ(t)Vlog \I/t(x,})] dt + g(t) dwy X0 ~ pdata (1)
ax? = [£(x2,1) dt — 2(1)V log Ws(x)| dt + g(t) AWt Xt ~ Pprior (2)

[Vogel et al., 2024]

e w; is a Wiener process. (White noise)

o f(z,t) is a vector-valued function known as the drift.

e ¢(t) is a scalar-valued term referred to as the diffusion coefficient.
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Schrodingers bridge

dx,} = [f(xtl,t) dt + gQ(t)Vlog \I/t(x,})] dt + g(t) dwy X0 ~ pdata (1)
ax? = [£(x2,1) dt — 2(1)V log Ws(x)| dt + g(t) AWt Xt ~ Pprior (2)

[Vogel et al., 2024]

e w; is a Wiener process. (White noise)

f(z,t) is a vector-valued function known as the drift.

g(t) is a scalar-valued term referred to as the diffusion coefficient.

V log ¥, (x;) and Vlog W, (x;) are additional nonlinear drift terms
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Examples of Schédingers Bridge
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Figure 4: Step-wise example of SB minimizing the transport cost.

[Liu et al., 2022]

Diffusion models for denoising point clouds




Evaluation Metric: Chamfer Distance

Defenition

R 1 o, . .
CD(P,P) = %ZHXFNN(X“ I3+ ZHXJ NN(x;,P)[13 (3)
=il

o Measures proximity between predicted and ground-truth point sets
in both directions.

o Penalizes both noise (outliers) and missing regions.
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Evaluation Metric: Point-to-Mesh Distance (P2M)

1 n
P2M (P, M) = o ?1612 d(Xi, f) 2|]__| Z )1(1161171)d Xi, f (4)
feF X
Point—Face (P2F) Face—Point (F2P)

Key Features

o P2F': Measures point accuracy on surface.
@ F2P: Checks for complete surface coverage.

o Less sensitive to sampling density, geometry-aware.
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Experiments

@ PU-Net

@ Our dataset

Experimental details

e CD and P2M on gaussian noise

e Quantitative and qualitative analysis of point cloud collapse

e Extending the diffusion process past what the model is trained for.

o
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Qualitative comparison
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Figure 5: Qualitative comparison of various point cloud denoising methods
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vise Evaluation of Denoising Performance
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Figure 6: Chamfer Distance and Point-to-Mesh (P2M) values over
optimization steps with 90% confidence intervals on our own dataset with 3%
isotopic Gaussian noise.
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vise Evaluation of Denoising Performance
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Figure 7: Chamfer Distance and Point-to-Mesh (P2M) values over
optimization steps with 90% confidence intervals on our own dataset with 1%
isotopic Gaussian noise.
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Point cloud collapse
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Object-level Denoising Results

10 - 103 (sparse) 50 - 10° (dense)
Method CD P2M In% CD P2M In% CD P2M In% CD P2M In% CD P2M In% CD P2M In%
3% 6% 9% 3% 6% 9%
E
‘E PD-Flow [16] 432 115 549 11.21 332 432 33.04 951 345 199 059 51.1 10.90 3.31 36.9 25.07 6.96 30.5
A LPEN [5] 3.68 1.08 552 9.66 299 402 2529 7.80 334 130 030 490 7.65 236 358 16.51 495 343
g P2P-B [23] 410 121 552 6.29 199 489 1221 3.90 430 139 040 53.1 482 124 414 11.22 3.18 358
1% 2% 3% 1% 2% 3%
5)
; PD-Flow [16] 213 038 555 325 101 549 519 252 506 0.65 0.16 56.6 142 0.78 542 390 286 487
% I-PEN [5] 231 037 518 343 090 514 549 250 439 066 0.12 503 1.05 043 508 254 1.65 41.1
a P2P-B [23] 228 039 564 3.20 081 550 399 1.42 533 059 009 542 090 032 529 156 0.84 50.0

Figure 8: Quantitative comparison of Chamfer Distance (CD) and
Point-to-Mesh (P2M) distance metrics, evaluated on PU-Net and our own
generated dataset under varying levels of isotropic Gaussian noise.
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Real-time inference

e Hardware limitation

o Computation complexity
e Ideally run on device or local setting

e Software limitation
e Point cloud reconstruction using RealSense camera
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Limitations
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