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Motivation: Reconstruction problem

Classical robotics problem.
Accurate 3D reconstruction is essential for spatial understanding.
Sensor noise and environmental interference degrade point clouds.

Figure 1: Examples of 3D reconstruction [Williams et al., 2021]
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Motivation: Point Cloud Denoising

Noisy reconstructions impair downstream tasks like recognition,
and planning.
Denoising is critical for robust robotic perception.
We evaluate P2P-Bridge, a diffusion-based denoising model.

Figure 2: Noisy vs. denoised point clouds [Wang et al., 2024]
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Previous Work

Signal-based methods: Outliers removal using low-pass filters.

Optimization-based methods: Local neighborhood
optimization.
Deep learning methods: Learn point-wise displacements,

Iterative-PFN
PD-Flow
Diffusion models: Gradually denoise in steps.

P2P-Bridge
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Problem formulation

Figure 3: Visualization of optimal transport[Peyré and Cuturi, 2020]

Definitions

Clean point cloud P = {xi} ∈ RM×3 (Blue points)
Noisy point cloud P̃ = {x̃i} ∈ RN×3 (Red points)
Model fθ(x)
Diffusion step xt+1 = xt + fθ(xt)

Kullback Leibler divergence (KL)
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Schrödingers bridge

SDE

dx1
t =

[
f(x1

t , t) dt+ g2(t)∇ logΨt(x
1
t )
]
dt+ g(t) dwt x0 ∼ pdata (1)

dx2
t =

[
f(x2

t , t) dt− g2(t)∇ log Ψ̂t(x
2
t )
]
dt+ g(t) dw̄t xt ∼ pprior (2)

[Vogel et al., 2024]

Definitions
wt is a Wiener process. (White noise)

f(x, t) is a vector-valued function known as the drift.
g(t) is a scalar-valued term referred to as the diffusion coefficient.
∇ logΨt(xt) and ∇ log Ψ̂t(xt) are additional nonlinear drift terms
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Examples of Schödingers Bridge

Figure 4: Step-wise example of SB minimizing the transport cost.

[Liu et al., 2022]

Diffusion models for denoising point clouds



Evaluation Metric: Chamfer Distance

Defenition

CD
(
P̂,P

)
=

1

2n

n∑
i=1

∥x̂i−NN(x̂i,P)∥22+
1

2m

m∑
j=1

∥xj−NN(xj , P̂)∥22 (3)

Key Features
Measures proximity between predicted and ground-truth point sets
in both directions.
Penalizes both noise (outliers) and missing regions.
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Evaluation Metric: Point-to-Mesh Distance (P2M)

Definition

P2M
(
P̂,M

)
=

1

2n

n∑
i=1

min
f∈F

d(x̂i, f)︸ ︷︷ ︸
Point→Face (P2F)

+
1

2|F|
∑
f∈F

min
x̂i∈P̂

d(x̂i, f)︸ ︷︷ ︸
Face→Point (F2P)

(4)

Key Features
P2F: Measures point accuracy on surface.
F2P: Checks for complete surface coverage.
Less sensitive to sampling density, geometry-aware.
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Experiments

Datasets
PU-Net
Our dataset

Experimental details
CD and P2M on gaussian noise
Quantitative and qualitative analysis of point cloud collapse
Extending the diffusion process past what the model is trained for.
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Qualitative comparison

Figure 5: Qualitative comparison of various point cloud denoising methods
against P2P-Bridge on PU-Net and our own generated dataset under isotopic
Gaussian noise.
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Stepwise Evaluation of Denoising Performance

Figure 6: Chamfer Distance and Point-to-Mesh (P2M) values over
optimization steps with 90% confidence intervals on our own dataset with 3%
isotopic Gaussian noise.
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Stepwise Evaluation of Denoising Performance

Figure 7: Chamfer Distance and Point-to-Mesh (P2M) values over
optimization steps with 90% confidence intervals on our own dataset with 1%
isotopic Gaussian noise.
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Point cloud collapse
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Object-level Denoising Results

Figure 8: Quantitative comparison of Chamfer Distance (CD) and
Point-to-Mesh (P2M) distance metrics, evaluated on PU-Net and our own
generated dataset under varying levels of isotropic Gaussian noise.
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Discussion

Future directions
Real-time inference

Limitations
Hardware limitation

Computation complexity
Ideally run on device or local setting

Software limitation
Point cloud reconstruction using RealSense camera
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Limitations

Figure 9: Denoising Table object with 50 000 datapoints with 3% isotopic
Gaussian noise.
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