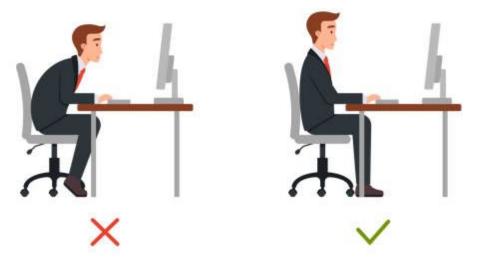


Working posture analysis

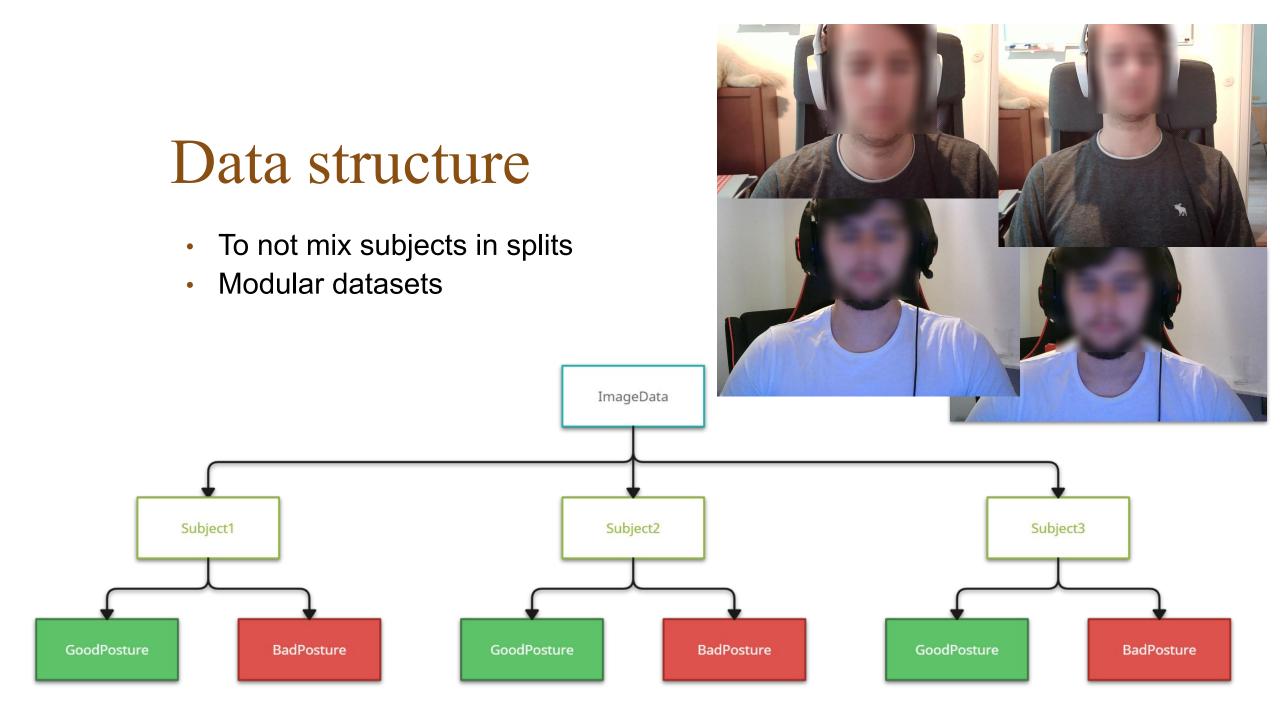
CNNs for classifying working posture using a simple webcam By Gustav Tindberg & Victor Schack, Supervised by Marcus Klang

SIG


The problem

The problem

- Poor working posture in the office
- Only marginal overlap with prior academic work
 - Multiple angles
 - Wearables
 - Setup procedures before each use
- Limited to common hardware
- No suitable existing data available.
 - Collect new dataset from scratch.



Data collection

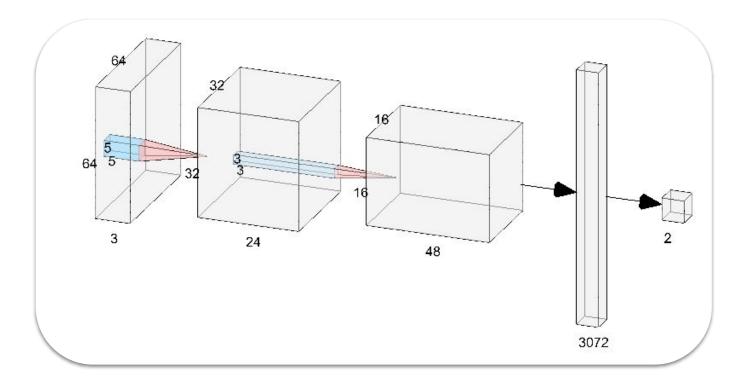
Data collection

- Live collection
- Video collection

Posture Image Collector		×
Select Posture:		
Good Posture		
🔲 Bad Posture		
Start		
Video		

Image Augmentations

- First added Transforms.
 - Helped with generalization
 - Mitigating overfitting


- Cropping based on head.
 - Centering the subject
 - Reducing background

ra	<pre>msform = transforms.Compose([]</pre>
	<pre>transforms.RandomPerspective(0.1,p=0.3),</pre>
	transforms.RandomResizedCrop(size=size),
	<pre>transforms.TrivialAugmentWide(), transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.0), MaxVit_T_Weights.IMAGENET1K_V1.transforms(),]</pre>

Models

Custom CNN

- Simple Architecture.
- Trained from scratch.
- Specialized to our task

Transfer learning

- Pre-trained and optimized
- Great at solving feature extraction
- Performance out of the box
- Evaluated on ImageNet
 - Object detection task
- Working posture detection
 - Aesthetic assessment
 - Pose estimation

Transfer learning

- RegNet (_Y_3_2GF)
 - Good performance at lower network scales
 - Low amount of parameters and compute
 - Reliable starting point
- MaxVit
 - Recently added to Torchvision
 - Also visual aesthetic assessment
 - Only slight increase in Params from Regnet

Weight	Acc@1	Acc@5	Params	GFLOPS	
MaxVit_T_Weights.IMAGENET1K_V1	83.7	96.722	30.9M	5.56	
RegNet_Y_3_2GF_Weights.IMAGENET1K_V2	81.982	<mark>95.972</mark>	19. <mark>4</mark> M	3.18	

Hyper-parameter tuning

Hyper-parameter tuning Using HyperOpt on the MaxVit network

- Starting point
 - Ir: 0.02, wd: 1e-4, epochs: 40
- First attempt:
 - 15 Trials, 1 hour runtime
 - Ir: 0.001, wd:1e-5, epochs: 80
- Final attempt:
 - 50 Trials, 8 hour runtime
 - Parameter space:
 - Ir: 1e-5 to 1e-3
 - wd 1e-10 to 1e-4
 - epochs: [60,70,80,90,100]
 - Ir: 0.0005, wd: 1e-4, epochs: 70

Tuned by minimizing loss

Evaluation

LOGO, Cross-validation

- Stratified on Subjects
 - Training one model per Subject
 - Leaving that Subject out for testing
- Used to evaluate a generalized performance of the networks
 - Looking at the performance on each subject
 - Looking at the mean across all models

MCC: Matthew's correlation coefficient

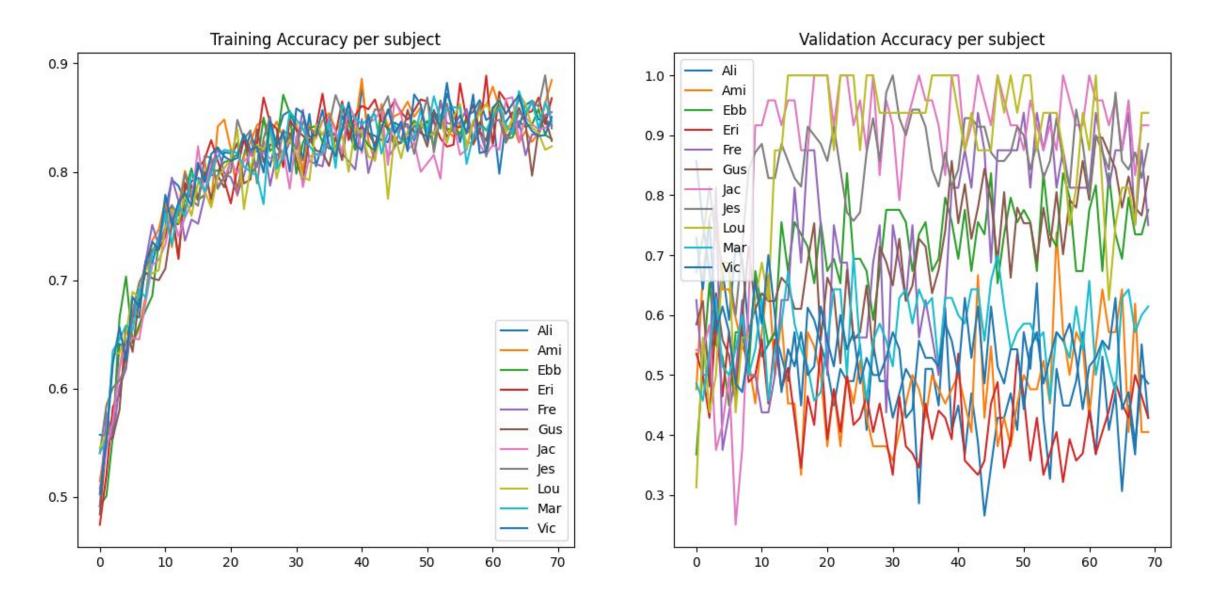
 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

Results

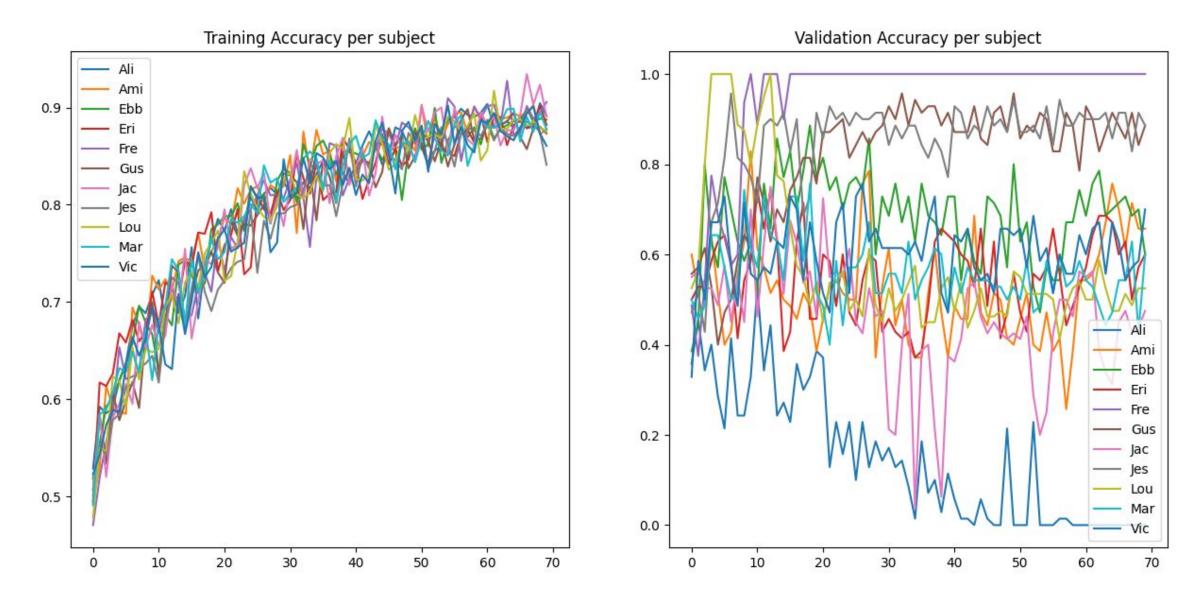
LOGO Cross-validation results On all available data

- CNN
 - Combined F1: 0.627
 - Mean MCC: 0.250
- RegNet
 - Combined F1: 0.57
 - Mean MCC: 0.173
- MaxVit (Hyper-parameter tuned using HyperOpt)
 - Combined F1: **0.633**
 - Mean MCC: **0.343**

MCC scores


MaxVit

RegNet


CNN

Ali	mcc: -0.29488391230979427	Ali	mcc: -0.32659863237109044	Ali	mcc: -1.0
Ami	mcc: -0.09449111825230681	Ami	mcc: 0.04415107856883479	Ami	mcc: 0.5270462766947299
Ebb	mcc: 0.41666666666666666	Ebb	mcc: 0.4	Ebb	mcc: 0.32659863237109044
Eri	mcc: -0.2212488394343549	Eri	mcc: 0.0	Eri	mcc: 0.2001978239850581
Fre	mcc: 0.8320502943378437	Fre	mcc: 0.8181818181818182	Fre	mcc: 1.0
Gus	mcc: 0.6546536707079772	Gus	mcc: 0.48038446141526137	Gus	mcc: 0.7745966692414834
Jac	mcc: 0.9198662110077999	Jac	mcc: 0.0	Jac	mcc: -0.30151134457776363
Jes	mcc: 0.5144957554275265	Jes	mcc: 0.1846372364689991	Jes	mcc: 0.7924058156930615
Lou	mcc: 0.7337993857053428	Lou	mcc: 0.0	Lou	mcc: 0.0
Mar	mcc: 0.18090680674665816	Mar	mcc: 0.33407655239053047	Mar	mcc: 0.11867816581938534
Vic	mcc: 0.13543224462197162	Vic	mcc: -0.033058980245364314	Vic	mcc: 0.31448545101657555

MaxVit

CNN

Cross-validation results On select data

- CNN
 - Combined F1: 0.736
 - Mean MCC: **0.604**
- RegNet
 - Combined F1: 0.665
 - Mean MCC: 0.429
- MaxVit (Hyper-parameter tuned using HyperOpt)
 - Combined F1: 0.667
 - Mean MCC: 0.443

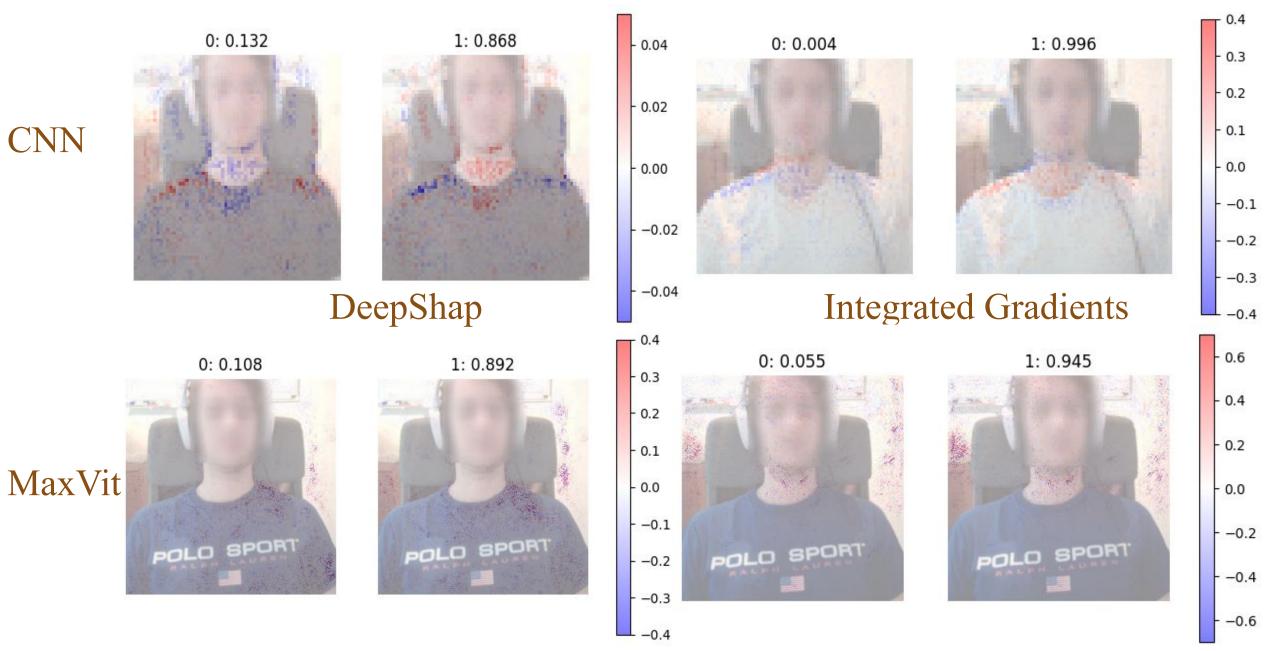
MCC scores

MaxVit

RegNet

CNN

Ami	mcc:	0.26413527189768715	Ami	mcc: 0.5310850045437944	Ami	mcc: 0.5270462766947299
Ebb	mcc:	0.5673665146135802	Ebb	mcc: 0.5927489783638191	Ebb	mcc: 0.6236095644623235
Eri	mcc:	0.35355339059327373	Eri	mcc: 0.46068221272042836	Eri	mcc: 0.39223227027636803
Fre	mcc:	0.6123724356957945	Fre	mcc: 0.6123724356957945	Fre	mcc: 1.0
Jes	mcc:	0.7924058156930615	Jes	mcc: 0.5196152422706631	Jes	mcc: 0.6324555320336759
Mar	mcc:	0.19245008972987526	Mar	mcc: 0.32090298129536804	Mar	mcc: 0.7888106377466154
Vic	mcc:	0.31980107453341566	Vic	mcc: -0.029424494316824985	Vic	mcc: 0.26650089544451305

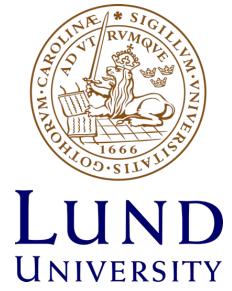

Results over filtered dataset

On Train-Test split data (Evaluated on the 3 most confusing subjects) • CNN

- - Final F1: 0.82
 - Final MCC: 0.690
- RegNet
 - Final F1: 0.78
 - Final MCC: 0.577
- MaxVit (Hyper-parameter tuned using HyperOpt)
 - Final F1: 0.86
 - Final MCC: **0.728**

DeepShap

Integrated Gradients



Conclusions

Conclusions

- Proof of concept indicated the task is learnable
- Adequate results with limited data and optimization
- Future work
 - Gather more diverse data
 - Fine-tune pre-trained model
 - Compile into usable background application

