Image Analysis for High-Throughput Microscopy Screening

> Leo Westerberg Marisa Wodrich

## **Project Outline**

- Problem: Cell segmentation and annotation in microscopy images is very costly and time consuming
- Solution: Automatic segmentation using neural networks
  - $\circ \quad \ \ \mathsf{Previously} \ \mathsf{done} \ \mathsf{using} \ \mathsf{a} \ \mathsf{U}\mathsf{-}\mathsf{Net}$
  - New approach: Using a HoVer-Net
- Challenges:
  - Limited labeled data
  - Segment borders can be unclear
  - Overlapping cells

# Methods

Data Model Training Prediction Evaluation Metrics



1104x1104 pixels grayscale images, split into 80x80 patches

### Nuclei data

• 44 train images, 6 test images

### Cell data

• 22 train images, 5 test images











## Model

### HoVer-Net

- Published in 2019 by Graham, Simon et al.
- Specifically designed for instance segmentation (and classification) in medical cell images
- One encoder, three decoder branches



## **Training, Prediction, Evaluation**

- Preprocessing of data and conversion with MATLAB
- Transfer learning: Checkpoint with pretrained HoVer-Net on external data set
- Network Parameters:
  - Learning Rate: 0.0001
  - Epochs: 1-50
  - Optimizer: Adam
  - Loss function: Combined pixel-based regression loss, weighted for each branch
- Evaluation:
  - Pixel-based approaches
  - Object based approaches: F1-Score, Jaccard Index

# Results

### Nuclei Segmentation

### **Cell Segmentation**

#### Results on validation data using our best model







|           | F1 Score with 0.9 Threshold | Average F1 Score | Average Jaccard Index |
|-----------|-----------------------------|------------------|-----------------------|
| HoVer-Net | 74.7 %                      | 80.4 %           | 87.3 %                |
| U-Net     | 65.4 %                      | 78.2 %           | 86.9 %                |





Epoch 7



Red : Predicted Segments Green : false positives, incorrect merges or splits Blue : false negatives

### Epoch 50



## **Cell Segmentation**

- Oversegmentation seen with pre-trained weights
- Fine-tuning did not solve oversegmentation



# Conclusion

## Conclusion

- Promising results for the nuclei segmentation
- Quick overfitting, after seven epochs
- Pixel-based error functions and metrics during the network training should be changed to object-based approaches
- More data is needed to properly train and evaluate the network's performance

# **Questions**?