

Protein Similarity

Cecilia Huang, Evelina Danielsson, Joel Bäcker

Supervisor: Daniel Varela

Andre Lab

Combination of computational and experimental methods to understand the structure, interactions and evolution of proteins.

Protein Similarity in Life Science

The shape of a protein is critical to its function. By finding similarities between the shapes of proteins, functions and relationships can be inferred.

Predicting protein structure: Challenges

- Large dataset of proteins (500.000)
- Computationally expensive (300 seconds comparing proteins!)

AndreLab protein design approach

Standard ML pipelining

Data Generation

- Random selection
- Zernike-Canterakis shape descriptor
- ZEAL score

How to create one sample

ZEAL score distribution

Features and targets

$$X = \begin{bmatrix} zd_{T_{0}} zd_{T_{1}}^{1} \cdots zd_{T_{120}}^{1} zd_{R_{0}}^{1} \cdots zd_{R_{120}}^{1} \\ zd_{T_{0}}^{2} zd_{T_{1}}^{2} \cdots zd_{T_{120}}^{2} zd_{R_{0}}^{2} \cdots zd_{R_{120}}^{2} \\ zd_{T_{0}}^{3} zd_{T_{0}}^{3} \cdots zd_{T_{120}}^{2} zd_{R_{0}}^{2} \cdots zd_{R_{120}}^{2} \end{bmatrix} \qquad y = \begin{bmatrix} zeal_{1} \\ zeal_{2} \\ \vdots \\ zeal_{n} \\ zeal_{n} \end{bmatrix}$$

Model Selection

- Regression
 - Linear Regression
 - Random Forest Regressor
- Neural Networks
 - Feed-Forward Network
 - 1D Convolutional Neural Network
 - 1D Fully-Convolutional Network

Feed Forward Network

dense_input: InputLayer		input:		[(None, 242)]	
		output:		[(None, 242)]	
	Ļ	8			
dense: Dense	input:		(No	(None, 242)	
	output:		(No	(None, 128)	
	Ţ	6			
dropout: Dropout		input:		(None, 128)	
		output:		(None, 128)	
		și.			
dense_1: Dense	in	put:	(N	one, 128)	
	ou	output:		(None, 1)	

Convolutional Neural Network

Fully Convolutional Network

Evaluation

Evaluation

Conclusions and further work

- Applicating the classical steps of ML pipelines on biology research
- Data generation was very tedious (surprise!)
 - No previous data
 - Data distribution (ZEAL)
- We are working on testing the model on a much larger data set that we will include in our report.
- Models results

