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Reinforcement learning

❏ Train an agent through trial and error
❏ In every state s, pick an action a
❏ Signal r is communicated back to agent
❏ Goal to maximize r
❏ Deep Blue beats current chess champion in 1997



AlphaGo, AlphaGo Zero, AlphaZero

❏ Action space too large for “conventional” algorithms (minimax, etc)
❏ For chess, b = 35, d = 80, for Go, b = 250, d = 150



AlphaGo

❏ Developed by DeepMind at Google
❏ Agent designed to play the game of Go
❏ Two networks, policy and value 
❏ Pre-trained on expert positions
❏ Later trained on self-play
❏ One (multiple smaller) more iteration to follow



AlphaGo Zero

❏ Builds upon AlphaGo, some modifications
❏ Learns from scratch, no processing of human expert moves
❏ Increased computational requirements



AlphaZero

❏ Generalized version of AlphaGo Zero
❏ Can play atari games, such as shogi, etc
❏ Chess is one example of another game it can master
❏ Image below shows AlphaZero vs “state of the art” agents, the previously best 

known agent



Monte Carlo Tree Search (MCTS)

Choice:

Difference from AlphaGo: No simulation step

[0.1, 0.2, 0.01 ] [0.1, 0.2, 0.01 ] [0.1, 0.2, 0.01 ]

Result: Trainingdata 
(state, policy)

[0.01, -0.2, 0.1 ]



Neural network

❏ Neural network consists of three input layers (player 1 board, player 2 board, 
what player to make next move) and two output layers. In between, there are 
a number of residual blocks

❏ A total of 6 residual blocks, reduced from 19 in the initial implementation
❏ Output is policy p and value v for state s, 



Experiments

❏ Trained on self-play generated games, network vs itself
❏ The experiments consisted of

❏ First experiment was done by generating 672 games, training the network, evaluating the 
network versus random, continuing to generate 672 games, ….

❏ Second experiment was done by building on iteration 3 that had a total of 13440 games 
trained on it. Here, new iterations were generated and trained by utilizing the previous iteration 
to generate games and then train on them. It did so until the new iteration beat the previous 
iteration by 80%. Then, it played against random and returned a result.



Results



Evaluation

❏ Actual improvements for new iteration
❏ More training with old data 

Reflection
❏ Reinforcement learning will improve your model still, even if you are using bad data in the beginning 
❏ Need for high computing power
❏ Machine learning uses a lot of parallel processing



Further improvements

vs

+

❏ Generality for doing Monte Carlo Simulations 
❏ Mirroring board to increase training data
❏ Generalizing the rules of the game 
❏ Keeping the 4x4 kernel size for connect4
❏ Make it more parallel to increase speed  



Thanks for listening


