

AN ANALYSIS OF SAFETY IN SIMULATION VS REALITY DONE BY: AHMED ABDALLA SUPERVISOR: MOMINA RIZWAN

INTRODUCTION

Functional safety is part of the overall safety of a system or equipment that depends on automatic protection

INTRODUCTION

Functional safety is part of the overall safety of a system or equipment that depends on automatic protection

A system is considered to be functionally safe if it operates correctly in response to its inputs and if it can't, then fail in a predictable way.

-Autonomous function being executed
-Sensors record some values that indicate a safety hazard
-We take actions to ensure safety

This Photo by Unknown Author is licensed under CC BY

Example of Autonomous functions

- -Navigation: Mobile robot moving back and forth between start and goal
- Pick and place

Safety Hazards

- Physical Contact between
 - Robot and Human R2H
 - Human and Robot H2R (initiated by person)
 - Cooperatively-initiated contact (Exchange of object)
- These could be intentional or unintentional (Accidents)
 - Dynamic
 - Static

Hazards Types

- Serious damage to Human or Robot
 - Crushing
 - Collision
 - Pushing
 - Drag
 - Touch Contact
 - Swipe

Problem Definition

- A robot is carrying out some autonomous function and an unexpected safety hazard is detected. That hazard can be due to a dynamic or static object (person, cat, table,...) raises a potential safety hazard.
- How can we detect this particular hazard?
- How can we assess it's danger level?
- How do we react appropriately to said hazards?

Solution Overview

- A robot is carrying out some autonomous function and an unexpected safety hazard is detected. That hazard can be due to a dynamic or static object (person, cat, table,...) raises a potential safety hazard.
 <u>Robot is Navigating from start to Goal as shown in Simulation</u>
- How can we detect this particular hazard?
 - We use Ros and YOLO: You Only Look Once (ros_yolo package)
- How can we assess it's danger level?
 - How close is the person or object to the robot? Using Bounding Box size.
- How do we react appropriately to said hazards?
 - Static Object: Table
 - Dynamic Object: Person

ROS for programming

YOLO ROS: Real-Time Object Detection for ROS

🗩 🗩 Demo

Why ROS?

- ROS is a powerful open-source framework for robot programming that makes reusing packages, sensor drivers and more easily available.
- We use the ros_yolo package because of it performs online object detection using a trained neural network
- ROS allows us to create nodes that subscribe to certain topics and publish commands according to the safety criteria we set.

Results

Results Navigating to goal

When Detection works well

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options.

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options.

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options.

Reactions to detected Objects Is done through python ROS nodes

Activities 🔄 Terminal 👻	
File Edit View Search Terminal	Tat
rosco x ab338 x ab338	
araa	
25250 0 08212890625	
35224	
0.114661458333	
person	
25029	
0.081474609375	
person	
24/80	
chair	
14630	
0.0476236979167	
bowl	
1073	
0.00349283854167	
bottle	
459	
0.001494140625	
0.00221354166667	
61440	
0.2	
person	
129019	
0.419983723958	
person	
145370	
0.4/3229100007	
141246	
0.45978515625	
person	
124800	
0.40625	
person	
130560	
0.425	
131520	

Reactions to detected Objects Is done through python ROS nodes

-One node detects the object and its "closeness" by size of the bounding box

-We stop the robot's navigation once a person is detected by launching node that publishes to the a Twist message on the /cmd vel topic

When Detection doesn't work well

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options.

Thank you

Future Work -Have more reactions to scenarios (objects, and safety hazards) -Implement on the Robot -Train model on more objects

