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e Alotof information - PubMed alone has over 20

T
million articles (as of 2020), with over 1 million

new published every year
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e Overwhelming - Need simpler and more accessible
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Natural Language Processing (NLP)
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Figure 1: The Transformer - model architecture.



—— Pre-training
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ChemProt Corpora - example sentence

REGULATOR-POSITIVE -«

"The results showed that administration of £< AICI3 >>

resulted in a significant elevation in the levels of [[

activity, CRP, NF-kB, and MCP-1 accompanied with a significant depletion in the Ach level."

AchE ]]




ChemProt Corpora - Class Balance

Train Dev
Class Count, %  Count %
INTERACTOR 2583  40.13 1350  37.96
NOT 241 | 3.74 175 @ 4.92
PART-OF 308  4.79 153 4.30
REGULATOR-NEGATIVE = 2505 38.92 1302 36.61
REGULATOR-POSITIVE =~ 799 12.41 576 16.20
Total 6436 100 3556 100




Artificially constructed data

start | , | entity | , | interaction | , | entity | , end
phrase | phrase 2 phrase

e Phrases from Cell Line Ontology and by supervisor (Sonja Aits) - Replace words
with synonyms for more variety

e Entities (proteins) from Uniprot database



Metrics

o True Positives True Positives
Precision = — _ Recall = — .
True Positives 4+ True Negatives True Positives 4 False Negatives
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Prior Results

Train: 0.88 Dev: 0.51

Train: 0.97 Dev: 0.65 (?)
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Tokenization
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e SciBERT trained on

different data hence has a visually stunning rum ##ination on love
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“a visually stunning rumination on love”




Changing the tokenizer
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Longer fine tuning

e Strangedropin
performance after e
12

Top performance:

Epoch | 19 11 9

Train 0.993 | 0.995 | 0.995

Dev 0.855 | 0.852 | 0.852
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.. even longer

e Again,drop at epoch
13, but now also at 24
and 35 (steps of 117?)

Top performance:

Epoch | 26
Train 0.995
Dev 0.861
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Performance on artificial data

e Noisy
e Fl-score~0.43

e Suggeststhat there are
significant differences
between the real and
artificial data, not only
that the artificial is
lacking
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Artificial models

Artificial data only proteins while ChemProt °
exclusively chemical and protein/DNA

Use chemical names from the ChemProt training se

Models trained on either scored perfect on artificial
data and similar on ChemProt

The one with chemicals scored higher when
evaluated on the ChemProt train set, which makes
sense due to using the same chemical names



Artificial models - Protein/Protein

e Perfect scores on the artificial
data, but poor on ChemProt

e Still large improvement
compared to artificial with
Base tokenizer
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Artificial models - Chemical/Protein

Better on train set - make sense
since more of the same words

Slightly worse on dev set though
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Mixed models - 10% Artificial

e Bestresultssofar
e Trained many models, and
averages similar to baseline

Top performance:

Epoch | 6

Train 0.995

Dev 0.864
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Mixed models - 25% Artificial

e Similar score to baseline

Top performance:
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Drops depend on max epochs - optimizer?
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Conclusions

e Veryimportant to use correct tokenizer
for BERT (or whenever using token
embeddings)

e Largeimprovement compared to earlier
models

e Subtle differences between baseline
and mixed models

e Slight favour towards the mixed, though
could be bias due to more models
trained.

26 (9) 6 6
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0.861 [+.21] 0.864 [+.21] 0.852 [+.20]

(0.852 [+.20])




Limitations

e Single sentences - relations could be described over several
e Artificial sentences have little variation - single type of structure and only one author

e Not enough time to tweak hyperparameters



Future Development

e Morediverse artificial building blocks

e Chemical names from some collection rather than just from train set (for more variation)
e Weighted support for the added artificial data

e Investigate what causes the sudden drops during longer training (optimizer?)

e Traina model using both train and dev set and do final evaluation on the test set



