Safety Constraints for Reinforcement Learning (RL)

- RL can be dangerous for
 - The robot itself
 - Tools and the environment
- Constant supervision is often not possible
- Safety rules need to be formulated
 - Avoidance of areas
 - Maximum forces
 - Maximum joint angles
- Recovery behaviors need to be defined
 - How to be able to continue to learn
- Effects on RL algorithms need to be assessed
 - O How does it affect the learning?

Goal: Implement framework to define and monitor safety constraints and recoveries

Reactive Planning and Acting using Behavior Trees (BTs)

- BTs are a plan representation and execution tool
- They allow reactivity
 - Periodic tick signal and action switching

However, when planning as task, the outcome is often a (fixed) skill sequence.

The paper "Towards Blended Reactive Planning and Acting using Behavior Trees" implements an approach to craft a BT that can solve a task

Goal: Integration into SkiROS2 (Skill-based platform for ROS)

Data Analysis tools for Design & Learning of Robot Tasks

- Design learning problems
 - Reward functions
 - Objectives
 - Parameters
- Visualize data & calculation of reward functions
 - When does the robot retrieve good reward?
 - O How much reward?
- After learning:
 - Which configurations were evaluated?
 - O Which rewards were achieved?
 - Which ranges are observed

Influence of Domain Randomization on sim2real transfer

- Learning in simulation is much easier to parallelize
- However, learned solutions need to transfer
 - Often overfitting in simulation
- Domain randomization can vary
 - Robot start positions
 - Locations of objects
 - Material properties
- Longer learning times
- Which variations are actually needed?

Goal: Evaluate the importance of different DR techniques on sim2real transfer

