

Virtual Staining - Prediction of microscopy staining

TERESA SCHEIDT – EDAN70 PROJECT IN ARTIFICIAL INTELLIGENCE 28.05.2021

Agenda

Aim of the project

Prediction of different fluorescence stainings using an Unet
=> replace costly experiments

Existing methods

- Idea and methods based on "In silico Labeling"¹
- U-net code based on existing project in research group

Pairs of transmitted light z-stacks Untrained Predicted and fluorescence image sets neural network fluorescence images Trained neural network New transmitted light z-stack

1) "In silico labeling: Predicting fluorescent labels in unlabeled images,", E.M.Christianesen et al.

Methods - Preprocessing

Conversion of C01-format to 16bit png images

iγ

• Normalization to mean $\mu=0$ and standard deviation $\sigma=1$

$$n_{norm} = \frac{im - \sigma}{\sigma}$$

μ

- Recentered Normalization to mean $\mu=0.5$ and standard deviation $\sigma=0.125$

$$im_{recenter} = im_{norm} * \sigma + \mu$$

Methods - Prediction

- Trained U-net
- Input: one channel, Output: two channels
- For final image prediction, change input/output size to actual image size

Methods – Training variations

Results – Training variations

	8 images, mse, ReLU	256 images, mse, ReLU	mse, tanh	ssim, ReLU	sim+mse, ReLU
D1-channel					
D2-channel					80000000000000000000000000000000000000

Results - Normalization

Results -Summary

- Localization and size of cells is correct in the predictions
- Prediction of d1 channel seems possible (unclear for d2)
- Best activation function: ReLU
- Loss functions has biggest impact -> more testing required
- Recentered normalization gives right output range of intensities

Future work

- Different network architectures
- Different loss functions
- Train network on a lot more images (10 000 – 1 000 000)

Thank you for listening

Questions?