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1 Intro: deep dive
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Optimization

▪ Methods for black-box functions
▫ Random search (RS)

■ Initialize with random sample -> move to a better position around 

sample

▫ Grid search (GS)

■ Exhaustive search using manually specified parameters and their 

value boundaries.

▫ Bayesian optimization (BO)

■ Next slide
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Bayesian Optimization

How it works:

1. Start with a prior for the 

function we want to optimize

2. Update posterior distribution 

(PD) by evaluating sample

3. Create acquisition function 

to decide next sample

● Expected improvement (EI)
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Application: Databases

▪ Optimize a database using its parameters
- Many recent papers exploring this

▪ Examples: MySQL, PostgreSQL, Cassandra, and RocksDB.
▫ Throughput/s (TPS) vs latency vs memory optimization, and more.

▪ Database parameters (features) are also called knobs
▫ Varies between databases and seem to increase in number over time
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2 Project overview
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Outline

The project problem

Use Bayesian 

optimization (BO) to 

find highest TPS.

- consistent hardware

Choice of optimizer

DBtune

an online service and 

used as an API.

- Warm-up phase to decide 

search space feasibility

- ML model (trees) to 

decide next samples

The Database

- NoSQL relational database

- Fast and embedded data 

storage

- Stores keys and values as 

byte streams
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Domain knowledge

Phase 0

Goal: limit parameter 

search space

Steps:

a) Review relevant 

literature

b) Review RocksDB 

documentation

c) Decide on best features

Feature importance

Phase 1

Goal: Only use most 

significant features

Steps:

a) evaluate the decision 

trees in the ML model of 

DBTune in its warm-up phase

b) Filter out features below 

a significance level of 2%

Find the optimum

Phase 2

Goal: Find set of knobs 

that lead to highest TPS

Steps:

a) DBtune will optimize over 

many iterations

b) Store best TPS and 

configuration found so far

Pipeline
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Benchmarking with RocksDB

▪ Workload: random reads and writes on multiple threads using 

internal tool

▫ Execute different ratios of reads to writes: 10:90, 50:50, 90:10

Steps:

1. Fill database with 5 million key-value pairs

2. Run workload benchmark for maximum X minutes (X = 5).

3. Evaluate TPS
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3 Results
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Phase 1: 

Feature Importance

➔ 130 samples were used in 

DBTune’s warm-up phase

➔ Importance weights are 

received from DBtune

➔ From 13 initial knobs to 11 at 

2%-pruning condition
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Read/write ratio Improvement (%)

10/90 11.0

50/50 23.4

90/10 64.7

Phase 2: 

Finding the optimum

12



Insights:

➔ No sign of convergence, 100 iterations perhaps not enough.

➔ Higher read:write seems to cause greater improvement from 

default.

➔ Predominant read:write leads to high TPS.
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Phase 2: 

Finding the optimum



3 Future work
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Other methods

➔ Compare with 

search-based methods

➔ Other learning-based 

methods or try 

improving the BO 

method

Benchmarking

➔ General: increase 

number of runs to 

average out, explore 

more read:write ratios, 

try a different 

hardware setup

➔ Increase optimization 

iterations to see a 

better sign of 

convergence

➔ Try other, more varied 

workload patterns that 

are exciting

Larger scope

➔ Explore other databases, 

maybe try comparing

SQL vs NoSQL

➔ Optimize for more/other 

objectives

➔ Explore how to minimize 

the effects of Curse of 

Dimensionality, i.e. how 

do we limit the search 

space even further?

Suggestions
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Special thanks

to the people working with DBtune
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Thanks!

Email: osama.eldawebi@gmail.com

Repository for the interested: github.com/deslay1/DB-tuning
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