
Tuning databases for better 

performance

A project exploring Bayesian Optimization for RocksDB

Osama Eldawebi 

May 2021

1



1 Intro: deep dive

2



Optimization

▪ Methods for black-box functions
▫ Random search (RS)

■ Initialize with random sample -> move to a better position around 

sample

▫ Grid search (GS)

■ Exhaustive search using manually specified parameters and their 

value boundaries.

▫ Bayesian optimization (BO)

■ Next slide

3



Bayesian Optimization

How it works:

1. Start with a prior for the 

function we want to optimize

2. Update posterior distribution 

(PD) by evaluating sample

3. Create acquisition function 

to decide next sample

● Expected improvement (EI)

4

Source: Wikipedia



Application: Databases

▪ Optimize a database using its parameters
- Many recent papers exploring this

▪ Examples: MySQL, PostgreSQL, Cassandra, and RocksDB.
▫ Throughput/s (TPS) vs latency vs memory optimization, and more.

▪ Database parameters (features) are also called knobs
▫ Varies between databases and seem to increase in number over time

5



2 Project overview

6



Outline

The project problem

Use Bayesian 

optimization (BO) to 

find highest TPS.

- consistent hardware

Choice of optimizer

DBtune

an online service and 

used as an API.

- Warm-up phase to decide 

search space feasibility

- ML model (trees) to 

decide next samples

The Database

- NoSQL relational database

- Fast and embedded data 

storage

- Stores keys and values as 

byte streams

7



Domain knowledge

Phase 0

Goal: limit parameter 

search space

Steps:

a) Review relevant 

literature

b) Review RocksDB 

documentation

c) Decide on best features

Feature importance

Phase 1

Goal: Only use most 

significant features

Steps:

a) evaluate the decision 

trees in the ML model of 

DBTune in its warm-up phase

b) Filter out features below 

a significance level of 2%

Find the optimum

Phase 2

Goal: Find set of knobs 

that lead to highest TPS

Steps:

a) DBtune will optimize over 

many iterations

b) Store best TPS and 

configuration found so far

Pipeline

8



Benchmarking with RocksDB

▪ Workload: random reads and writes on multiple threads using 

internal tool

▫ Execute different ratios of reads to writes: 10:90, 50:50, 90:10

Steps:

1. Fill database with 5 million key-value pairs

2. Run workload benchmark for maximum X minutes (X = 5).

3. Evaluate TPS

9



3 Results

10



Phase 1: 

Feature Importance

➔ 130 samples were used in 

DBTune’s warm-up phase

➔ Importance weights are 

received from DBtune

➔ From 13 initial knobs to 11 at 

2%-pruning condition

11



Read/write ratio Improvement (%)

10/90 11.0

50/50 23.4

90/10 64.7

Phase 2: 

Finding the optimum

12



Insights:

➔ No sign of convergence, 100 iterations perhaps not enough.

➔ Higher read:write seems to cause greater improvement from 

default.

➔ Predominant read:write leads to high TPS.

13

Phase 2: 

Finding the optimum



3 Future work

14



Other methods

➔ Compare with 

search-based methods

➔ Other learning-based 

methods or try 

improving the BO 

method

Benchmarking

➔ General: increase 

number of runs to 

average out, explore 

more read:write ratios, 

try a different 

hardware setup

➔ Increase optimization 

iterations to see a 

better sign of 

convergence

➔ Try other, more varied 

workload patterns that 

are exciting

Larger scope

➔ Explore other databases, 

maybe try comparing

SQL vs NoSQL

➔ Optimize for more/other 

objectives

➔ Explore how to minimize 

the effects of Curse of 

Dimensionality, i.e. how 

do we limit the search 

space even further?

Suggestions

15



Special thanks

to the people working with DBtune

16



Thanks!

Email: osama.eldawebi@gmail.com

Repository for the interested: github.com/deslay1/DB-tuning

17


