Segmentation of nuclei in Microscopy Imaging

USING THE U-NET ARCHITECTURE

Sonja Aits - Queen of lysosomes

- What are lysosomes?
- Cancer research
- Fluorescent microscopy imaging (FMI)
- The biggest bottleneck right now

Detection of nuclei in FMI

- My task
$>$ Identify the outlines of nuclear objects in Sonjas im
- Previous work

〉 U-net

- Broad Institute
- Data
- Image set from Broad Institute (including ground tr
- Image set from Sonjas lab (without ground truth ar

Baseline: Otsu's method

Convolutional Neural Networks \& the U-net architecture

- Convolutional neural network:
- Resembles the visual cortex in the brain
- Convolution to extract high level features
- Pitfalls
> U-net
- Specific objective function (loss function)
- Compatible with augmented images
- Broad Institute version of U-net
- Specialized for nuclei detection
- Borders are weighted extra in loss function

Image Augmentation

- Random Cropping
- Rotation/Flipping
- Illumination
- Affine/Elastic

deformed

Training

- Train using Broad Institute images \rightarrow Model 1
- Broad Model + Sonjas images + Augmentation \rightarrow Model 2
- Leave one out cross-validation when training with Sonjas images

Evaluation

- Better for nuclei detection: Pixel \& object based:
- IoU for each individual object + minimum area coverage threshold
- Recall: $\frac{T P}{F N+T P}$

Precision: $\frac{T P}{F P+T P}$

- F1-score: Harmonic mean of Precision and Recall

Ground Truth

Results: visual inspection

Otsu's method

Otsu's method IOU: 0.389

Model 1

Model 1
IOU: 0.356

Model 2

Model 2
IoU: 0.496

Results: F1-score

Conclusion \& Continued work

- Finding an object is easy, finding it's correct outline is hard
- Addition of manually annotated images really improves the performance
- Image augmentation also increases performance
- To improve:
- Add more manually annotated images
- Try elastic transformations (\& others)

