
Probabilistic Programming

Investigating optimisation-based inference methods

Karl-Oskar Rikås D16



Probabilistic Programming Languages (PPLs)
● Current methodology: describe a model in mathematical notation, then 

implement it from scratch. Model and inference algorithm ends up being 
tightly coupled.

● Goal of PPLs: take ideas from Computer Science (Software Engineering) to 
make it faster and easier to develop these models.

● How? Decouple the model description from the inference algorithm.

● Model is described as code in a custom language or embedded DSL, 
inference is implemented as an interpreter or compiler.



Example of a model



Bayes’ theorem 

Posterior

Prior

Likelihood



Given that the lawn is dry, did it rain?



P(rain=true | lawn wet=false)

Based on example from Ścibior, A., Kammar, O. and Ghahramani, Z., 2018. Functional programming for modular Bayesian inference. Proceedings of the ACM on 
Programming Languages, 2(ICFP), pp.1-29.





More advanced models
● Bayesian Linear and Logistic Regression (regression, classification)
● Hidden Markov Model (robot localisation and more, as. 3 in the AI course)
● Topic models (used for NLP to categorise collection of documents)
● Gaussian process models (time-series prediction)
● And many more...





Why a PPL in a FP language?
● Leverage same benefits of FP for developing models.
● Modularity

○ In ‘monad-bayes’ some inference algorithms are simply compositions of simpler ones. For 
example Particle Independent Metropolis Hastings is composed by Sequential Monte Carlo 
and Metropolis Hasting. I.e. potentially make it easier to implement inference methods.

○ Also harder, because most literature on algorithms assumes imperative programming style.

● Correctness
○ “Correct by construction” by leveraging static typing with an advanced type-system.
○ Very recent research shows it is possible to check certain statistical properties statically using 

“Trace Types” (i.e. at compile time). Not yet implemented in ‘monad-bayes’.

Lew, Alexander K., Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K. Mansinghka. “Trace Types and Denotational Semantics for Sound Programmable 
Inference in Probabilistic Languages.” Proceedings of the ACM on Programming Languages 4, no. POPL (December 20, 2019): 19:1–19:32. 



Project
● Future work in the paper: integrate and implement gradient-based inference 

methods, PyTorch suggested for AD.

● Goal: investigate AD, implement HMC or VI and integrate into the library 
‘monad-bayes’.

● Result: investigated AD, PyTorch bindings seemed appropriate, partial 
implementation of VI in Haskell.



Bayesian inference
● Compute the posterior.
● For complicated models (most real applications) computing the posterior is 

intractable (exponential time complexity).
● Instead we use algorithms that approximate the posterior.
● Usually done with some kind of Monte Carlo algorithm.



Automatic differentiation (AD)
● Used to compute gradients for the inference algorithms: Hamiltonian Monte 

Carlo and Variational Inference.
● Not the same as numeric or symbolic differentiation, computes the exact 

derivative at a given point.



Dual numbers



Based on tutorial https://www.danielbrice.net/blog/automatic-differentiation-is-trivial-in-haskell/

https://www.danielbrice.net/blog/automatic-differentiation-is-trivial-in-haskell/




AD implementations
● Forward-mode is easy to implement in a language that supports overloaded 

operators (ad-hoc polymorphism).
● Too slow in for real world applications, linear time complexity with respect to 

model parameters.
● In practice a more advanced algorithm called reverse-mode AD is used, 

usually implemented in C/C++ and called using bindings from higher-level 
languages.

● Side note: AD is used in neural network libraries like PyTorch and Tensorflow 
to compute gradients.



Variational inference (VI)
● Turns Bayesian inference into an optimisation problem. Normally VI requires 

manually deriving an optimisation routine for a given model.
● Using AD this routine can be derived automatically given a differentiable 

model.

1. Transform the model into a representation that is possible to optimise.
2. Sample variables from normal distributions using an existing inference 

method.
3. Optimise the resulting function using Stochastic Gradient Descent (or 

something more advanced like Adam).



Demo: Bayesian Linear Regression
Not finished on time.



Future work
● Finish the implementation and test it.
● Benchmark the implementation and see if it actually improves performance.
● Generalize the ADVI implementation and look into integration into 

‘monad-bayes’.
● Look into applications.

● Even further in the future: look into “Trace Types” paper mentioned earlier in 
the presentation, promises higher correctness guarantees and improved 
performance for ‘monad-bayes’.



Thanks for listening


