# Connected flight route search 

Using Skyscanner's Travel API

## Services available today

- AirTreks TripPlanner
- Kilroy
- Cheap Flights Finder
- Many others...

All these services require the user to choose every destination and date in their journey.


Copenhagen, Denmark
MAD
NCE
Nice, France

Athens, Greece

Vilnius, Lithuania

+ Add next destination
$\checkmark$ Return to Copenhagen


## Skyscanner

- Flight search service, connected to 1200 travel partners
- "Explore Everywhere" - cheap flights from your nearest airport (one-way or return)
- Open API (via third party)


Dates of Travel: Anytime


## What if you want to explore the world?

- Round trips are inefficient
- Use Skyscanner API to construct routes with Python
- Say you:
- Broke student and need to find the cheapest alternatives
- Have vacation between two dates
- Want to stay at each stop between a-b amount of days



## The problem(s)

Root-to-root


## Longest distance



## Root-to-root

- Uniform cost search variant
- Several parallel searches at once
- Parallelization of search window
- Finds routes of varying length
- Avoids visiting the same airport twice
- Flight cost as cost function


A typical result from a root-to-root search

## Algorithm (In very broad terms)

1. Expand root node
2. Start searches for N top nodes by cost
a. Expand(node 干 window) $\rightarrow$ Frontier (Priority Queue)
// Expansions done in parallel
b. Pop from frontier and add to explored until either:
i. Return node is found $\rightarrow$ Return node
ii. End date is reached $\rightarrow$ Return Expand(Previous node, return airport)
iii. Timeout is reached $\rightarrow$ Return None
3. Present result for searches that found a solution

## Example result

Input: CPH, 07-01 to 08-01, stay time: 5, window: 1.

1. Copenhagen, Denmark.
2. Vilnius, Lithuania.
3. Oslo, Norway.
4. Gdansk, Poland.
5. Stockholm, Sweden.
6. Vienna, Austria.

448 SEK
110 SEK
7. Milan, Italy.
8. Copenhagen, Denmark.

140 SEK
134 SEK
161 SEK
161 SEK
387 SEK

Total cost: 1541 SEK

Dates: 07-01 to 08-01


## Example result

Input: AMS, 07-01 to 08-01, stay time: 5, window: 1.

1. Amsterdam, Netherlands.
2. Madrid, Spain.
3. Ibiza, Spain.
4. Valencia, Spain.
5. Bordeaux, France.
6. Naples, Italy.
7. Milan, Italy.
8. Amsterdam, Netherlands.

727 SEK 236 SEK 187 SEK 193 SEK 215 SEK 213 SEK 644 SEK

Total cost: 2415 SEK
Dates: 07-01 to 08-01


## Longest distance

- Same algorithm as root-to-root, but:
- Has another cost function
- Does not return to root node
- Focus on maximizing distance over cost


A typical result from a longest distance search

## Example result

Input: LAX, 08-01 to 08-30, stay time: 10, window: 5.

1. Los Angeles, United States.
2. Paris, France.
3. Rome, Italy.
4. Budapest, Hungary.

2032 SEK 415 SEK 212 SEK

Total cost: 2659 SEK
Distance over cost: 3.98 km/SEK
Dates: 08-01 to 08-30


## Example result

Input: MMX, 08-01 to 08-30, stay time: 7, window: 5.

1. Malmö, Sweden.
2. Budapest, Hungary.
3. Bangkok, Thailand.
4. Nelson, New Zealand.

109 SEK
2226 SEK
3655 SEK

Total cost: 5990 SEK
Distance over cost: $\mathbf{2 . 9 8}$ km/SEK
Dates: 08-01 to 08-30


## Optimization

- API calls are really slow
- Limited number of API calls per minute



## Lessons learned

- Flights are really cheap (if you know where to look)
- The best search algorithm depends on the problem
- Finding admissible heuristics for real world problems is very hard


## Future work

- User determined constraints
- Price, bagage, number of travellers
- Choose countries NOT to go to
- Choose countries to prioritize (fuzzy constraints)
- Use "live" Skyscanner API data
- Improve presentation of routes (Website or similar)
- Add hotel price search for the duration of the stay via hotels API


## Questions?

