
Connected flight route
search

 Using Skyscanner’s Travel API

Services available today
● AirTreks TripPlanner
● Kilroy
● Cheap Flights Finder
● Many others...

All these services require the user to choose
every destination and date in their journey.

Skyscanner
● Flight search service, connected to 1200 travel

partners
● “Explore Everywhere” - cheap flights from your

nearest airport (one-way or return)
● Open API (via third party)

What if you want to explore the world?
● Round trips are inefficient
● Use Skyscanner API to construct

routes with Python
● Say you:

○ Broke student and need to find the
cheapest alternatives

○ Have vacation between two dates
○ Want to stay at each stop between a-b

amount of days

The problem(s)
Root-to-root Longest distance

Root-to-root
● Uniform cost search variant
● Several parallel searches at once
● Parallelization of search window
● Finds routes of varying length
● Avoids visiting the same airport

twice
● Flight cost as cost function

A typical result from a root-to-root search

Algorithm (In very broad terms)
1. Expand root node
2. Start searches for N top nodes by cost

a. Expand(node ∓ window) → Frontier (Priority Queue) // Expansions done in parallel
b. Pop from frontier and add to explored until either:

i. Return node is found → Return node
ii. End date is reached → Return Expand(Previous node, return airport)
iii. Timeout is reached → Return None

3. Present result for searches that found a solution

Example result
Input: CPH, 07-01 to 08-01, stay time: 5, window: 1.

1. Copenhagen, Denmark.
2. Vilnius, Lithuania. 448 SEK
3. Oslo, Norway. 110 SEK
4. Gdansk, Poland. 140 SEK
5. Stockholm, Sweden. 134 SEK
6. Vienna, Austria. 161 SEK
7. Milan, Italy. 161 SEK
8. Copenhagen, Denmark. 387 SEK

Total cost: 1541 SEK

Dates: 07-01 to 08-01

Example result
Input: AMS, 07-01 to 08-01, stay time: 5, window: 1.

1. Amsterdam, Netherlands.
2. Madrid, Spain. 727 SEK
3. Ibiza, Spain. 236 SEK
4. Valencia, Spain. 187 SEK
5. Bordeaux, France. 193 SEK
6. Naples, Italy. 215 SEK
7. Milan, Italy. 213 SEK
8. Amsterdam, Netherlands. 644 SEK

Total cost: 2415 SEK

Dates: 07-01 to 08-01

Longest distance
● Same algorithm as root-to-root,

but:
○ Has another cost function
○ Does not return to root node

● Focus on maximizing distance
over cost

A typical result from a longest distance search

Example result
Input: LAX, 08-01 to 08-30, stay time: 10, window: 5.

1. Los Angeles, United States.
2. Paris, France. 2032 SEK
3. Rome, Italy. 415 SEK
4. Budapest, Hungary. 212 SEK

Total cost: 2659 SEK

Distance over cost: 3.98 km/SEK

Dates: 08-01 to 08-30

Example result
Input: MMX, 08-01 to 08-30, stay time: 7, window: 5.

1. Malmö, Sweden.
2. Budapest, Hungary. 109 SEK
3. Bangkok, Thailand. 2226 SEK
4. Nelson, New Zealand. 3655 SEK

Total cost: 5990 SEK

Distance over cost: 2.98 km/SEK

Dates: 08-01 to 08-30

Optimization
● API calls are

really slow

● Limited number
of API calls per
minute

● Threaded API calls
○ Concurrent.futures library
○ Doing multiple searches

concurrently
○ Searches multiple dates at the

same time

● Caching
○ Pickle library
○ Save API response to dictionary on

runtime
○ Write dictionary to binary file on

finished execution

Lessons learned
● Flights are really cheap (if you know where to look)

● The best search algorithm depends on the problem

● Finding admissible heuristics for real world problems is very hard

Future work
● User determined constraints

○ Price, bagage, number of travellers
○ Choose countries NOT to go to
○ Choose countries to prioritize (fuzzy constraints)

● Use “live” Skyscanner API data
● Improve presentation of routes (Website or similar)
● Add hotel price search for the duration of the stay via hotels API

Questions?

