
omegathello
An Othello agent utilizing deep learning
By Johan Karlberg & Erik Månsson

Ω

The goal

To explore the usage of deep learning for
playing turn-based games, AlphaGo style.

Why Othello?

In a nutshell - simplicity:

- The game only has a single piece type (in contrast to Chess)
- A move does not depend on previous moves (as in Go)
- Rather simple implementation of the game itself
- Has a clear and simple objective

But at the same time:

- Complex enough to be competitive

The rules of Othello

- Turn based

- Black moves first

- If no move can be made, the play
passes back to the other player

- When no more moves can be made,
the player with the most disks wins

Starting position

The rules of Othello

Possible moves (black to play)

->

The game tree

Move

0.45?

Evaluation

An evaluation of a given game state is an estimation of
which player currently has the better position.

The simplest possible heuristic is taking the score
“score” = “number of black disks” - “number of white disks”

Creating better heuristics requires deep knowledge about
the game.

Supervised learning

We don’t have deep knowledge about the game.

We do however have a lot of data from tournaments.

Let’s learn from them using supervised learning on deep neural networks.

A classification problem

More formally, given a game state consisting of

- The board
- The player to move

We want to classify whether

1) Black is winning, or
2) White is winning

Finding a solution

We need to find suitable...

- Input shape and format
- Labelling & error function
- Data points
- Network structure

Also, we don’t have a lot of computing power, so we need to keep it efficient.

Board representation

=

But who’s turn is it?

A second input layer is added to make use
of the information of who’s turn it is.

Inspired by AlphaGo

Another thing, symmetry

Possible first move

All equally good
=
Unnecessarily complex

Handling symmetry

Per tournament rules, always assume this move

Starting position in practice

Labelling

-> ?

“Classic” classification labelling:

- One-hot
- [1, 0], if black is winning
- [0, 1], if white is winning

- Single binary node
- 1, if black is winning
- 0, if white is winning

These are typically used with a
cross-entropy error function.

Labelling

Labelling

Instead we went for...

-> 1, if black is winning
-1, if white is winning{

Labelling

Why [-1, 1]?

- Uniform with the input format
- Works neatly with the mean square error function

Then why mean square error?

- Much more reliable results
- Good metric on loss (accuracy is hard/expensive to measure)

We later discovered that AlphaGo does the same.

The training data

Data from the WTHOR database of
tournament games. Currently 122k games.

A tree of states is built where
Wins/Ties/Losses are counted.

Label = (Wins - Losses) / (W + T + L)

State used if abs(y) > 0.90.

A total of 5.3M unique states,
of which 4.8M are used.

The top nodes of a move tree

The network

- A deep residual convolutional neural network
- Residuals mitigates the “vanishing gradient

problem” in deep networks
- Same style as AlphaGo, but ~64 times smaller
- Obtained from a lot of trial and error

Input

Convolutional block

10 x residual blocks

Fully connected block

Output

Implementation

“Keras is a high-level neural networks
API, written in Python and capable of
running on top of TensorFlow, CNTK, or
Theano. It was developed with a focus on
enabling fast experimentation. Being
able to go from idea to result with the
least possible delay is key to doing good
research.”

Implementation

Everything else is done in C and Cython.

Why? Python is slow. Cython improves
the performance with static typing.

Fun note: for some parts, our C
implementation is over 1000x faster
than the Python counterpart.

Putting it all together

Our agent is a minimax search utilizing the trained neural network

To evaluate its performance, we also implemented

- A game simulation function
- Some competitors

Our main competitor

A Static Weight Heuristic Function.

By Sannidhanam and Annamalai at University of Washington.

* https://courses.cs.washington.edu/courses/cse573/04au/Project/mini1/RUSSIA/Final_Paper.pdf

Results

Analyzing minimax performance, counting SWHF wins:

MM depth 1 2 3 4

1 71% 86% 93% 98%

2 59% 82% 91% 96%

3 53% 75% 81% 95%

4 44% 69% 78% 90%

SWHF

Sc
or

e

Results

Win rate against...

Minimax depth Random Score SWHF

1 83% 69% 50%

2 - 66% 39%

3 - 74% 32%

4 - 36% 24%

5 - 36% 17%

The evaluated agent uses a minimax depth 1 search, trained for 2 epochs.

Results

Win rate against...

Minimax depth Score SWHF

1 95% 83%

2 92% 77%

3 89% 67%

4 85% 64%

5 80% 54%

6 68% 47%

Same thing using a minimax depth 2 search.

Shouldn’t it be stronger?

- Supervised learning is only as strong as the data trained on
- Use more/better data
- Use reinforcement learning

- Computing power is limited, otherwise we could...
- Use larger nets
- Do hyperparameter optimization

- We need more time to explore the subject

Future work

- Monte carlo tree search
- Reinforcement learning
- Generalize to play other games

This slide is intentionally left (almost) blank.

Thanks for listening!
Questions?

