omegathello

An Othello agent utilizing deep learning By Johan Karlberg & Erik Månsson

The goal

To explore the usage of deep learning for playing turn-based games, AlphaGo style.

Why Othello?

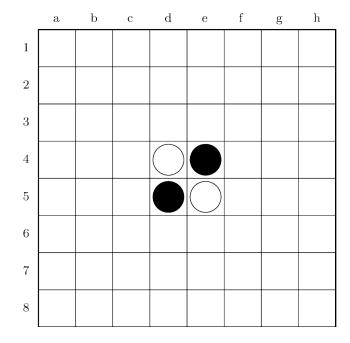
In a nutshell - simplicity:

- The game only has a single piece type (in contrast to Chess)
- A move does not depend on previous moves (as in Go)
- Rather simple implementation of the game itself
- Has a clear and simple objective

But at the same time:

- Complex enough to be competitive

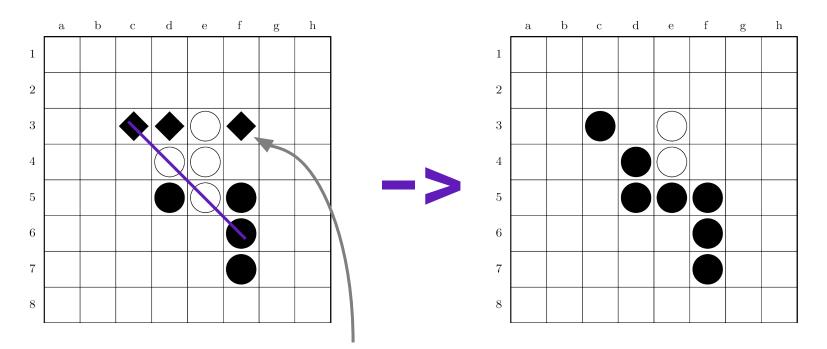
The rules of Othello



Starting position

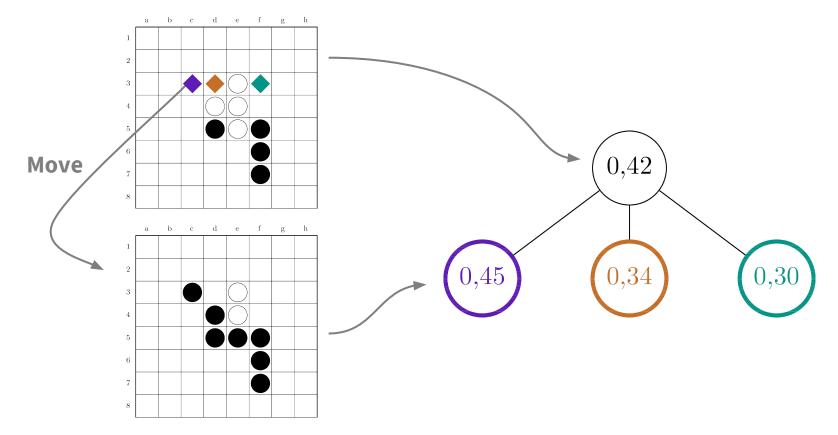
- Turn based
- Black moves first
- If no move can be made, the play passes back to the other player
- When no more moves can be made, the player with the most disks wins

The rules of Othello



Possible moves (black to play)

The game tree



0.45?

Evaluation

An evaluation of a given game state is an estimation of which player currently has the better position.

The simplest possible heuristic is taking the score "score" = "number of black disks" - "number of white disks"

Creating better heuristics requires deep knowledge about the game.

Supervised learning

We don't have deep knowledge about the game.

We do however have a lot of data from tournaments.

Let's learn from them using supervised learning on deep neural networks.

A classification problem

More formally, given a game state consisting of

- The board
- The player to move

We want to classify whether

- 1) Black is winning, or
- 2) White is winning

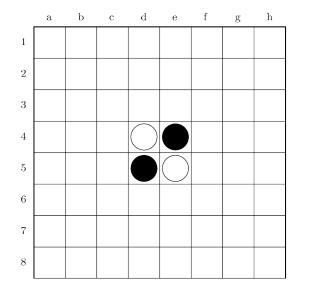
Finding a solution

We need to find suitable...

- Input shape and format
- Labelling & error function
- Data points
- Network structure

Also, we don't have a lot of computing power, so we need to keep it **efficient**.

Board representation

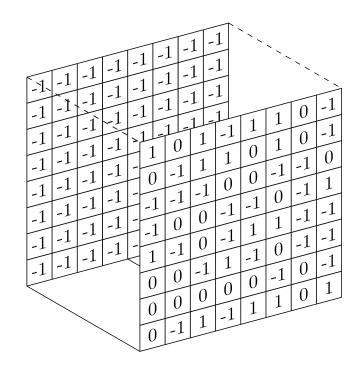


[0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	$0 \\ 0$
0	0	0		0	0	0	0
0	0	0	-1	1	0	0	0
0		0	1	-1	0	0	0 0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

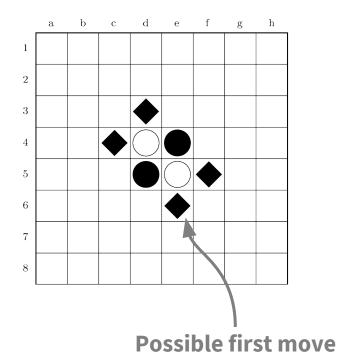
But who's turn is it?

A second input layer is added to make use of the information of who's turn it is.

Inspired by AlphaGo



Another thing, symmetry

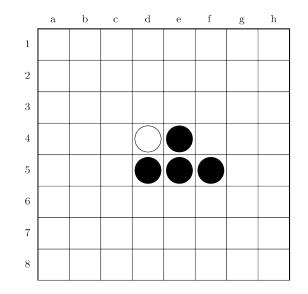


All equally good = Unnecessarily complex

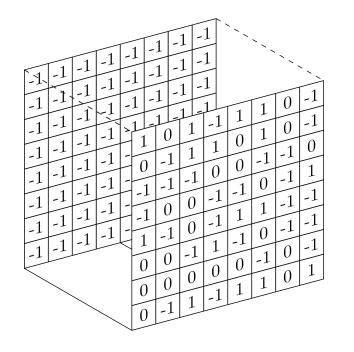
Handling symmetry



Starting position in practice



Per tournament rules, always assume this move



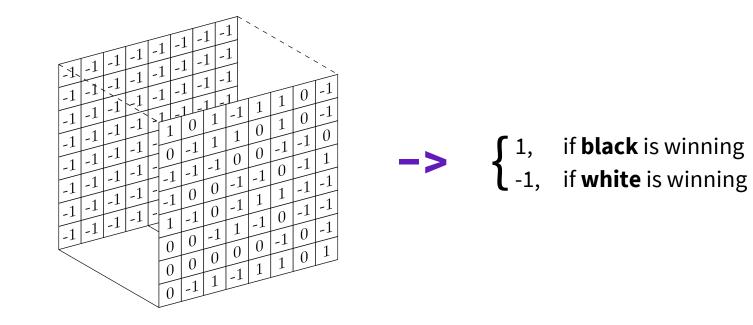
?

"Classic" classification labelling:

- One-hot
 - [1, 0], if black is winning
 - [0, 1], if white is winning
- Single binary node
 - 1, if black is winning
 - 0, if white is winning

These are typically used with a cross-entropy error function.

Instead we went for...



Why [-1, 1]?

- Uniform with the input format
- Works neatly with the **mean square error** function

Then why mean square error?

- Much more reliable results
- Good metric on loss (accuracy is hard/expensive to measure)

We later discovered that AlphaGo does the same.

The training data

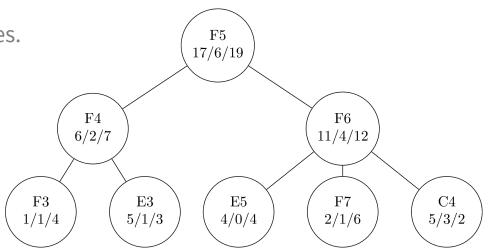
Data from the WTHOR database of tournament games. Currently 122k games.

A tree of states is built where Wins/Ties/Losses are counted.

Label = (Wins - Losses) / (W + T + L)

State used if abs(y) > 0.90.

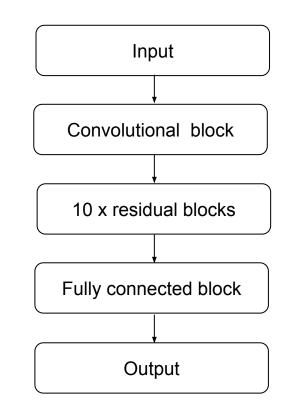
A total of 5.3M unique states, of which 4.8M are used.



The top nodes of a move tree

The network

- A deep residual convolutional neural network
- Residuals mitigates the "vanishing gradient problem" in deep networks
- Same style as AlphaGo, but ~64 times smaller
- Obtained from a lot of trial and error



Implementation

"Keras is a high-level neural networks API, written in **Python** and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling **fast experimentation**. Being able to go from idea to result with the least possible delay is key to doing good research."

Implementation

Everything else is done in C and Cython.

Why? Python is **slow**. Cython improves the performance with static typing.

Fun note: for some parts, our C implementation is over **1000x** faster than the Python counterpart.

Putting it all together

Our agent is a minimax search utilizing the trained neural network

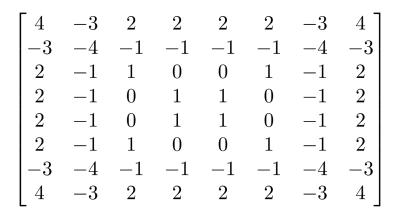
To evaluate its performance, we also implemented

- A game simulation function
- Some competitors

Our main competitor

A Static Weight Heuristic Function.

By Sannidhanam and Annamalai at University of Washington.



Results

Analyzing minimax performance, counting SWHF wins:

	MM depth	1	2	3	4
Score	1	71%	86%	93%	98%
	2	59%	82%	91%	96%
	3	53%	75%	81%	95%
	4	44%	69%	78%	90%

SWHF

Results

The evaluated agent uses a **minimax depth 1** search, trained for 2 epochs.

Minimax depth	Random	Score	SWHF
1	83%	69%	50%
2	-	66%	39%
3	-	74%	32%
4	-	36%	24%
5	_	36%	17%

Win rate against...

Results

Same thing using a **minimax depth 2** search.

Minimax depth	Score	SWHF
1	95%	83%
2	92%	77%
3	89%	67%
4	85%	64%
5	80%	54%
6	68%	47%

Win rate against...

Shouldn't it be stronger?

- Supervised learning is only as strong as the data trained on
 - Use more/better data
 - Use reinforcement learning
- Computing power is limited, otherwise we could...
 - Use larger nets
 - Do hyperparameter optimization
- We need more time to explore the subject

Future work

- Monte carlo tree search
- Reinforcement learning
- Generalize to play other games

This slide is intentionally left (almost) blank.

Thanks for listening! Questions?