
Deep Reinforcement Learning

Olof Harrysson 2018

Presentation with videos

https://docs.google.com/presentation/d/123YJRvbpfNGDgcGkOiD6v3C6D-SBhY8ywtN2ATpY0I0/edit?usp=sharing

Reinforcement Learning (RL)
Reinforcement learning is a branch of machine learning where an agent learns by
trial and error, much like humans do. Good actions are rewarded positively whilst
bad actions are punished

Agents are most often trained in a simulated reality called an environment. This
makes it easy to reset the simulation compared to resetting a physical object

However, once a trained agent is uploaded to a physical robot it generally doesn’t
perform well due to differences in the simulated world and the real one

Agent ←→ Env
1. Environment sends agent a state that describes the world
2. Agent use the state to decide an action and performs this action in the

environment
3. Environment update its state and gives the agent a reward corresponding to

the action taken

Q-learning
Imagine an agent whose goal is to walk to a green circle.
Once there, it gets a reward of +1. The position of the
agent determines the state of the game. To change the
state, the agent can take an action. Walk up, down, left,
right

On its way to the green circle the agent wants to avoid the
red circle since going there will give it a negative reward. It
also wants to avoid going back and forth between the two
white circles

Q learning is an algorithm that helps the agent evaluate
state and action pairs to make it possible to choose the
optimal action in whichever state. “If I’m in start, I should go
up”

All the state and action pairs are saved to remember how
good they were

Function Approximation
Q-learning doesn’t work for large state spaces. The algorithm simply needs to
much computational time to converge

Continuous state spaces would have an infinitely large state space and is
therefore not solvable with traditional Q-learning. One could approximate the
states into a finite amount of bins and from there do Q-learning. Unfortunately this
also often results in a large state space

In deep Q-learning, neural networks are used as function approximators to get
around this problem

Deep Q-network (DQN)

The state is the input to the network.
E.g. position, velocity of the agent

The output is corresponding Q values for
available actions. The highest Q-value is
chosen as action taken

Training a Deep Q-Network (DQN)

● Similarly to traditional Q-learning, the Q(s,a) values are calculated with the
function

● The network is then updated with st as input and Q(st,at) as label

Training a Deep Q-Network (DQN)

● Problem - DQN suffers from is that states are highly correlated due to the
episodic nature of the environments. The current state will influence what the
next state will be. This introduces bias into the model and easily leads to the
DQN learning a sub-optimal behaviour or overfitting to current episodes

● Solution - Experience Replay
○ We give the agent a memory and save the last M seen transition data e.i. state, action,

reward, next state
○ Instead of updating the network on the current transition, we sample N transitions from our

memory and update the DQN in a batch setting
○ This reduces overfitting on single transitions and a correlated episode

Training a Deep Q-Network (DQN)

● Problem - Using the network to calculate states’ values and also update the
network can create feedback loops. This often leads to Q-values exploding in
size which decreases performance

● Solution - Target Network
○ Create a second network identical in structure to the DQN but with different weights
○ Use the second network to calculate the label used for the primary network update
○ Update the second networks weights in a small direction towards the primary net’s weights
○ The use of a target network reduces oscillation for the DQNs predicted Q values

Exploration vs Exploitation

● When should the agent take actions that it considers suboptimal to potentially
uncover an even better strategy? This is an unsolved problem for unknown or
stochastic rewards

● At what point should it stop the exploration and start doing the exploitation?

● Generally the agent starts doing a lot of exploration and gradually shifts its
policy to exploitation

E-greedy Exploration

● With probability ε, take a random action. Otherwise take the action the agent
considers the best.

● DQN started with ε=1 and lowered it whilst program ran until ε=0.05

Parameter Search

Deep Deterministic Policy Gradient (DDPG)
● Can take continuous actions
● Consists of an Actor and a Critic, each with its own neural network

○ Actor takes a state as input and outputs a continuous action
○ Critic takes both a state and action as input and outputs the value of taking the action in that

state
● Critic is updated in the same fashion as the network in the DQN
● The actor is updated so that it gives that action that will lead to the highest

value in the critic

Continuous Noise
Ornstein Uhlenbeck Reduced as program is run

Without noise decay With noise decay

Possible Improvements
● Specialized reward functions
● Prioritized experience replay
● Fine tune parameters for specific environments
● Different network shapes / settings

Thank you for your attention
Questions?

