

Ad click fraud detection

SIGI

Christian Benson and Adam Thuvesen

Problem

- Ad click fraud
 Mobile
- Click fraud is a major issue for advertisers
 - Pay per click ads
 - The app creator (publisher) will profit from more clicks
 - Fraudulent automated clicks
 - The advertiser loses

Problem

How to detect a fraudulent click in a mobile app?
 Using data from ad clicks

Dataset

Dataset from Kaggle

• 7 features

- ip (ip address)
- app (mobile app)
- \circ device (type of device)
- os (operating system)
- channel (channel id of mobile ad publisher)
- click time (ad was clicked)
- attributed time (time of possible download)
- is attributed (ad led to app download or not)

	ip	app	device	os	channel	click_time	attributed_time	is_attributed
0	87540	12	1	13	497	2017-11-07 09:30:38	NaN	0
1	105560	25	1	17	259	2017-11-07 13:40:27	NaN	0
2	101424	12	1	19	212	2017-11-07 18:05:24	NaN	0
3	94584	13	1	13	477	2017-11-07 04:58:08	NaN	0
4	68413	12	1	1	178	2017-11-09 09:00:09	NaN	0

Dataset

- 187M entries
- Very unbalanced
 99.8 % negative samples (not downloaded)

Baseline

- Dummy
- k-NN
- SVM
- Logistic Regression
- Decision Trees
- Random Forest
- Metric
 ROC-AUC

	1.00 1.00
Model	
Random Forest	0.938999
Decision Tree	0.862197
Logistic Regression	0.817376
K-Nearest Neighbors	0.730056
SVM RBF	0.500000
Dummy baseline classifier	0.497799

ROC ALLC

Architecture

- Raw data is used to train model
- Using trained model to predict on test set

Idea

- Decision trees performed well
- Research in the area supported various ensemble of decision trees to be successful in similar problems
- Data preprocessing extract new features
- Gradient boosted trees
 - Frameworks
 - XGB popular
 - Microsofts LGBM newly gaining attention
- Neural net

How it works - Decision Trees

Ensemble of Decision Trees

How it works - Gradient Boosted Trees

Gradient Boosted Trees

• Error = bias + variance

Data preprocessing

- Data preprocessing extract new features
 - Unique occurrences
 - Total count
 - Cumulative count
 - Variance
 - Mean
 - Aggregation
 - Previous/next click
 - Time
- 23-30 features in total

Training

- Trained on 10M entries
- Models
 - Neural net with embedding layer
 - LGBMXGB

Model Report bstl.best_iteration: 89 auc: 0.984961614709 Plot metrics during training...

[79.83014464378357]: model training time

Solution

- Feature Engineering
 - Create new features from existing ones
- Gradient Boosted Trees
 - XGB
 - LGBM
- Ensemble of LGBM and XGB models
- Neural net not performing quite as well

Ensemble

- Combining two or more models for better results
- Can be done in several ways
- Logarithmic average

Solution architecture

Results

- LGBM best model: 0.9784
- XGB best model: 0.9733
- Neural net best model: 0.9508
- Logarithmic ensemble mix including the two best LGBM and the two best XGB: **0.9787**

Thank you for listening!