

LUNDS UNIVERSITET Lunds Tekniska Högskola

Anomaly detection With Dynamic **Boltzmann machines**

Hi, I'm Christoffer.

Let's talk anomaly detection!

The agenda Problem description

Introduction & Background

3

2

Methodology

4

5

Results

Conclusion

this system.

Studied a a combustion power plant situated in Stockholm. More specifically, one of the six boilers in the plant, Boiler 6. The **GOal** is to detect anomalies in

Combustion Powerplant

1 Boiler 3 subsystems 1000 sensors

What is anomaly detection?

Anomaly detection are the data points in a data set that does not fit well with the rest of the data, the events or observations are classed as anomalies.

Boltzmann machines

- Type of neural network
 Energy based & stochastic model
- Increasing popularity in anomaly detection
- Too slow
 → Dynamic BM handles this

Methodology

CRISP-DM

Cross-industry Standard Process

Business Understanding Deployment

⊼)→

HOG.613KU201 System output

Logical

Boiler - 19 clusters

Fuel - 1 clusters

Residue - 2 clusters

Table 1: Subsystems f number of variables in Name 5 Ammoniak Arbetsluft 4 Avloppsånga 60 1 Brännolja, lätt - 18 FJV,120 C 23 Friblåsning 15 3 Hjälpånga Rökgaser 1 Sotningsånga 10

Clusters Dimensionality

Correlation

for the B	oiler system and	the
var.	Name	# var.
	Hjälpånga 40	9
	Kylvatten	21
7	Manöverluft	2
8	Mava PN 160	45
3	MAVA S 16	9
5	Pannluft	102
	Pannvatten	7
13	Sand	10
0		

Boiler - 21 cluster

Fuel - 8 clusters

Residue - 5 clusters

Many uni-variate cluster where percentages

Mathematical correlations Boiler

Heatmap - correlation between sensors

None of the uni-variate clusters were modelled

Dendrogram - clustering based on averages

Mathematical correlations Boiler

•

Mathematical correlations Fuel

Mathematical correlations Residue

Did logical and mathematical clusters match?

Math cluster	Logic cluster	Total # matches	% matches in math	% matches in loaic	# math vars	# logic vars
1	Kylvatten	4	100	19	4	21
2	Pannluft	4	100	3	4	107
3	Rökgaser	6	100	5	6	114
4	Hjälpånga 40	2	40	22	5	9
4	Friblåsning	2	40	13	5	15
5	Avloppsånga 60	1	25	5	4	19
5	Pannluft	3	75	2	4	107
6	Rökgaser	10	71	9	14	114
6	Pannluft	4	28	4	14	107
7	Rökgaser	19	27	17	70	114

Did logical and mathematical clusters match?

- Sort off
- Math clusters more precise
- Not as strong correlation in logical groups as believed

One model for each cluster -34 different models!

Setting the correct parameters such as learning rate, decay rate, delay and threshold

Creating a multivariate Model

Optimize parameters with RMSE

Modeling

40/60 ratio on training & test data

Calculating the multivariate

- 1. Take difference between input and prediction for all vectors, normalize and sum them all together
- 2. Calculate the Interquartile range

Issue: How to take into account different magnitudes of sensors? Do they all contribute as much?

Determining the threshold

Threshold is determined by the upper interquartile range

Precision & Recall Boiler Clusters

Converting to hourly resolution vs minute.

Issue:

PPCR identifies the percentage of the total population that is flagged

Including all clusters give 100% PPCR

Precision: 65% Recall: 46% Accuracy: 55% PPCR: 41%

209 anomaly hours during 1-22 April

Conclusion

- Many open questions still, what is the best threshold method, when to use a more simple method etc.
- Good results visually, hard to quantify without better labelled data.

Thank you!

