
Object Pose Estimation in Robotics 
Using a Low-Cost RGB-D Camera
Alexander Ganslandt & Andreas Svensson



Background

● Picking up an object in a structured and predefined 
environment is no match for today’s industrial robots

● The task becomes more cumbersome when the objects 
are moved by e.g. a human operator

● With today's increasing demand for human-robot 
interaction and cooperation, the robot needs to be able 
to adapt to unstructured environments



Problem

● Can we estimate the pose of an object i.e. position and 
rotation using an RGB-D camera?

● How accurately can we measure the pose of the object?
● Can we transform the pose estimation into the robot’s 

coordinate reference system?



Contents

● Basics
○ RGB-D Camera Introduction
○ Point Clouds and Point Cloud Library

● Project Description and Results
○ Constructing Point Cloud Models
○ Object Pose Estimation
○ Connecting to a Robot

● Future Work and Conclusion



RGB-D Camera Introduction

● RGB camera + Depth sensor       2.5 D
● Time-of-Flight (laser, phase-shift)
● Passive triangulation
● Active triangulation (structured light)



● Small RGB-D camera using 
structured light

● Low-cost (around $149)
● Uses Intel RealSense SDK 

with lots of examples
● Poor and incomplete 

documentation

Intel RealSense SR300



Point Cloud

● Set of data points 
in 3D

● Can contain color 
information



Point Cloud Library (PCL)

● Library for 2D/3D image and point cloud processing
● Large scale, open source and cross-platform

○ Well written documentation
○ Great tutorials
○ Supports many point cloud formats (PCD OBJ PLY)

● Written in C++
○ Some support for Visual Studio (2008 and 2010)



Constructing Point Cloud Models

• We need a 3D model of the object for the pose 
estimation

• Achieved by segmentation and merging point clouds 
from different views



Constructing Point Cloud Models



Constructing Point Cloud Models

Segmentation
● RANSAC to find and remove plane
● Euclidean Cluster Extraction to extract point cloud of 

object



Constructing Point Cloud Models

Random sample consensus (RANSAC)
● Mainly used as an outlier detector
● RANSAC to remove a plane:

○ Equation of a plane: ax+by+cz+d = 0
○ Inliers are points in a close proximity of the plane
○ Find the set of inliers to the plane and remove them



Constructing Point Cloud Models

Euclidean Cluster Extraction
● Searches for the set of neighbors of a point that are 

within a sphere
● Uses a Kd-tree structure for finding the nearest 

neighbors



Constructing Point Cloud Models



Constructing Point Cloud Models 

Pairwise registration
● Two consecutive segments have different rotation and 

translation. 
● Pairwise registration tries to find the transformation 

between the segments
● Once the transformation has been found the point clouds 

are merged and smoothed.  



Constructing Point Cloud Models 

Pairwise registration - Finding the transformation
● First a pose estimation algorithm is used to find a rough 

transformation using a heavily downsampled version of 
the segment (more on this later)

● Once a rough estimate of the transformation has been 
found an Iterative Closest Point (ICP) algorithm is used 
to get a better estimate using the full size of the sample 
set  

● The point cloud in the second image is then transformed 
to match the point cloud in the first image  



Constructing Point Cloud Models 

Iterative Closest Point (ICP)  
● Used to minimize the distance between two point clouds. 
● Achieved by estimating a rotation R and translation t 
● This is done by minimizing a cost function:

● Convergence is improved if the point clouds are initially 
close



Constructing Point Cloud Models 

   



Final Point Cloud Model



Final Point Cloud Model

● Extracted model is far from perfect
○ Hard to achieve a true 3D model of symmetric 

objects
● Alternatively:

○ Create and use a CAD model of the object
○ Use 3D-scanning software (price) 
○ Reconstruct the 3D image by using the RGB images

■ Extract matching features and use triangulation



Object Pose Estimation

● We want to estimate 6-DoF
○ Position of object (3-DoF)
○ Rotation of object (3-DoF)



Pipeline - Input



Pipeline - Downsample



Pipeline - Remove largest plane



Pipeline - Extract clusters



Pipeline - Estimate normals



Pipeline - Estimate features

● Encode a points geometrical properties
● We use Fast Point Feature Histograms (FPFH)

○ Looks at the k-neighborhood of each point
○ Computes features based on direction of normals

● Many different point feature representations available
○ Viewpoint Feature Histogram (2010)
○ Color Point Pair Feature (2015)



Pipeline - Estimate pose



Pipeline - Estimate pose



Pipeline - Estimate pose



Pipeline - Estimate pose



Pipeline - Estimate pose



Pipeline - Estimate pose



Pipeline - Estimate pose



Pipeline - Estimate pose



Results



Results



Connecting to a Robot

● Find transformation from camera to robot coordinate 
system

● Euclidean transformation
○ Need at least 3 points expressed in both coordinate 

systems
● Could be done automatically using pose estimation
● Could also directly estimate pose of robot if it is visible



Problem

● Can we estimate the pose of an object i.e. position and 
rotation using an RGB-D camera?

● How accurately can we measure the pose of the object?
● Can we translate the pose estimation into the robot’s 

coordinate reference system?



Future Work

● Autonomous robot-camera calibration
● Using RGB data in features
● Estimating pose for multiple identical objects
● Using multiple RGB-D cameras to avoid occlusions



Thank you for listening!

Questions?


