

Active Logic

Erik Grampp

May 22, 2017

- Integer labelled logic
- Introduced by Elgot-Drapkin and Perlis

Short recap of logics

• Propositional logic: $\alpha \land \beta \to \neg \gamma$

Short recap of logics

- Propositional logic: $\alpha \land \beta \rightarrow \neg \gamma$
- First order / Predicate logic: $\forall x : p(x) \rightarrow q(x)$

Short recap of logics

- Propositional logic: $\alpha \land \beta \rightarrow \neg \gamma$
- First order / Predicate logic: $\forall x : p(x) \rightarrow q(x)$
- Modal logic: $\Box \alpha \land \Diamond \beta \to \Diamond \gamma$

Active logic

Labelled formulae

Active logic

- Labelled formulae
- Rules of inference

Active logic

- Labelled formulae
- Rules of inference

Active logic

Basic rules of inference:

 $\frac{i:\ldots}{i+1:Now(i+1)}$ $\frac{i:A,A \to B}{i+1:B}$ $\frac{i:A}{i+1:A}$

Uses for active logic

- Reasoning within time
- Reasoning about time
- Controlling expansion

The Three Wise Men Problem

- All three can see each others hats
- At least one blue hat

The Three Wise Men Problem

- All three can see each others hats
- At least one blue hat

Solution:

The Three Wise Men Problem

- All three can see each others hats
- At least one blue hat

Solution:

No two white hats: the one who saw them would know

The Three Wise Men Problem

- All three can see each others hats
- At least one blue hat

Solution:

- No two white hats: the one who saw them would know
- No one white hat: the one who saw it would know

The Three Wise Men Problem

- All three can see each others hats
- At least one blue hat

Solution:

- No two white hats: the one who saw them would know
- No one white hat: the one who saw it would know

Therefore: three blue hats

The Theorem Prover

- Developed by Victor Nilsson in 2010
- Written in Prolog

Modularizing rules

- Modularizing rules
- Extending theorem prover

- Modularizing rules
- Extending theorem prover
- Extending belief structure

- Modularizing rules
- Extending theorem prover
- Extending belief structure
- Creating rules for multiple knowledge bases

- Modularizing rules
- Extending theorem prover
- Extending belief structure
- Creating rules for multiple knowledge bases

$$\frac{\mathcal{K}^{i}_{\alpha}\boldsymbol{A},\mathcal{K}^{i}_{\alpha}\boldsymbol{A}\rightarrow\boldsymbol{B}}{\mathcal{K}^{i+1}_{\alpha}\boldsymbol{B}}$$

Questions?