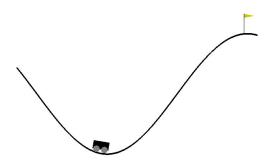
Comparison between NEAT and Deep-Q learning The Mountain Car problem

Andreas Forslöw Mattias Josefsson


Projekt i datavetenskap, LTH, 2017

Outline

- MountainCar
- Deep-Q learning
- 3 Neuroevolution of augmenting topologies (NEAT)
- 4 Results
- Discussion

Problem

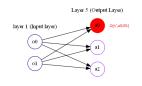
MountainCar

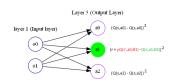
Deep-Q

Reinforcement learning

- Question: given a state s; what is the action that leads to highest reward?
 - Quick reward; long reward?
- Bellman equation: $Q(s, a) = r(s, a) + \gamma \max_{a'} Q(s', a')$
 - **1** $\gamma = 0; \ \gamma = 1?$
- Q-learning:

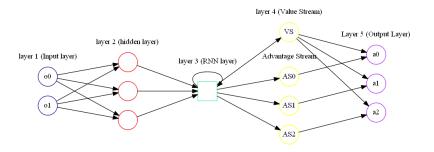
$$Q(s,a) = Q(s,a) + \alpha(r(s,a) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

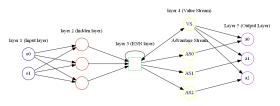

- 1 Iteratively improve value system for (s, a)-pairs.
- Deep Q:
 - Neural network architecture
 - 2 Episode: $\langle s, a, r, s' \rangle$
 - **3** Loss = $(r + \gamma \max_{a'} Q(s', a'; \theta^-) Q(s, a; \theta))^2$
 - **1** Interpret as: given $\langle s, a, r, s' \rangle$, calculate $\gamma \max_{a'} Q(s', a'; \theta^-)$ in supporting network. Use this result to backpropagate in regular network on $\langle s, a \rangle$.



Deep-Q

Example, Deep Q Recurrent Network


• 2 Identical networks with different weights and learning rates. First network (supporting network) to calculate $\max_{a'} Q(s', a'; \theta_1)$. Second to backpropagate for $\langle s, a \rangle$.



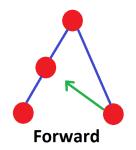
Deep-Q

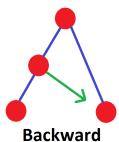
Network structure, Deep Q Recurrent Network

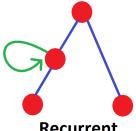
NEAT

What is NEAT?

- A genetic technique to evolve neural networks
- What makes NEAT unique compared to other genetic algorithms?


NEAT


What is NEAT?


Different types of mutations

- Weight mutation
- Activation mutation
- Insert new link
- Insert new node
- Activation/deactivation of links

Different types of links

Recurrent

NEAT

What is NEAT?

What makes NEAT unique is:

- The populatioon is devided in species
- Each specimen have their own fitness and each species have a fitness score

Results

Results

- http://31.208.78.186:5891/
- https://supernovan.github.io/

Discussion

- Discussion of results
- Issues
- Further work

For Further Reading I

Buckland, Mat.

Al Techniques for Game Programming.

Cincinnati: Premier Press, 2002.

Kenneth Stanley

Al for Game Programming: