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Image understanding is hard!

• ”Easy for humans, hard for 
computers”

• Relevant XKCD (posted in 2014)

http://xkcd.com/1425/



● Problem introduction

● Theory 

– Neural Networks

– ConvNets

– Deep Pre-trained with example

● My approach

● Challenges

● Results

Outline



● Kaggle – Data science competitions

● Dataset:

– Over 100 000 images (>4 Gb)

– 100 persons performing 10 different actions (next slides)

– Labelled training set with ~20K images, test set ~80K

● Task is to label test set with probabilities for each class

● Evaluation by multi-class logloss:

Distracted Drivers competition1

[1]: https://www.kaggle.com/c/state-farm-distracted-driver-detection
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● C0:

Driving safely

● C2:

Talking right

Action classes

● C1:

Texting right

● C3:

Texting left



● C4:

Talking left

● C6:

Drinking

Action classes cont.

● C5:

Operating

radio

● C7:

Reaching 

back



● C8:

Hair and makeup

Action classes cont.

● C9:

Talking to 
passenger



Neural networks

• One node with 

sigmoid activation 

= logistic regression

• Many nodes/layers → learns complex input/output 
relations with cheap operations

Demo2: Link

[2]: Tensorflow Playground: http://playground.tensorflow.org/ 

http://playground.tensorflow.org/#activation=relu&batchSize=30&dataset=spiral&regDataset=reg-plane&learningRate=0.1&regularizationRate=0&noise=0&networkShape=6,6,6&seed=0.51056&showTestData=false&discretize=false&percTrainData=80&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification


ConvNets

• Convolution (”faltning”)
– Fourier/Laplace transform

– Image analysis

– Signal Processing

• Filter on images

• Ex:
– Gaussian Blur

– Sharpening

– Edge detection

• ConvNets include convolutional layers 

Sharpening filter



Deep ConvNet, VGG163

• 16 conv. Layers + 4 fully connected (”normal”) layers

• > 138 million parameters

• 2-3 weeks to train on

ImageNet database

• 1.3 million images 

from 1000 classes 

VGG16 architecture

[3]: VGG-16 network [http://arxiv.org/abs/1409.1556]



VGG16 Demo

• Giant Panda image from 

Hong Kong Zoo

• VGG16 gives output:

• 99.9999% confidence in class 388: 
giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca



● Use pre-trained VGG16 to 
extract feature-vectors from 
images

● Use first layer after the 
convolutions, produces 
4096-dimensional vector

● Every image takes 0.5s to 
process → ~20h on laptop

Back to the drivers!



● Seperability of classes

● Mean output over different 
classes

● Seemed to show good 
variability → good chance of 
seperation

● Promising!

Will it work?

Max 
activations 
Class 0

Max 
activations 
Class 9



● Many similar 
images taken within 
short timeframes → 
prone to overfitting

● Seperate persons 
in train and test set

● Network learned 
person-specifics → 
bad results on test!

Classification challenges

Two similar images from C0: safe driving



● To recieve accurate test 
evaluations, cross-validation is 
required

● 26 different persons in train set

● Split my training set into 5 folds 
with 5 persons held out from 
training

 

Labelled cross-validation



● Now I had a: 

– train matrix 22424 x 4096 

– test matrix 79726 x 4096  

● Many approaches to classification:

– Support vector machine

– Logistic regression

– Random forest

– Decision Trees

– Gradient Boosting

● SVM and Log.Reg produced best res. 
(implemented in scikit-learn)

Classification



● Using the entire 4096 feature vector 
for every image (testing took time!)

● Regularization:

– Prevents overfitting by limiting size 
of weights

– An additional hyperparameter to 
optimize

● Finding the right hyperparameters 
using cross-validation

Training

Train (blue) and validation 
(red) acc. (top) and logloss 
(bottom)



● 60-65% accuracy, 1.10 logloss →        
~250 on current leaderboards

● Wanted less features per image

● Reduces training time – more time to 
optimize hyperparameters 

● Finding the ”right” features for my specific 
task will greatly prevent overfitting

Improvements



● Which features were the most important

● Removing features that coded for person-
specifics

● Ended up with 887 feature vector → much 
faster training/testing and easier on the 
memory

Dimensionality reduction



● Over 80% accuracy and <0.60 logloss on cross-
validation!

● Sadly nowhere close to <0.2 logloss (top of LB) :(

Final Results



Thanks!

● Dennis Medved

● Pierre Nugues

● Magnus Oskarsson

● Have a great summer!
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