
Distracted Driver Detection
CAN COMPUTER VISION SPOT DISTRACTED DRIVERS?
BY: CESAR HIERSEMANN

Image understanding is hard!

• ”Easy for humans, hard for
computers”

• Relevant XKCD (posted in 2014)

http://xkcd.com/1425/

● Problem introduction

● Theory

– Neural Networks

– ConvNets

– Deep Pre-trained with example

● My approach

● Challenges

● Results

Outline

● Kaggle – Data science competitions

● Dataset:

– Over 100 000 images (>4 Gb)

– 100 persons performing 10 different actions (next slides)

– Labelled training set with ~20K images, test set ~80K

● Task is to label test set with probabilities for each class

● Evaluation by multi-class logloss:

Distracted Drivers competition1

[1]: https://www.kaggle.com/c/state-farm-distracted-driver-detection

L=−
1
N
∑
i=1

N

∑
j=1

M

y ij log (p ij)

● C0:

Driving safely

● C2:

Talking right

Action classes

● C1:

Texting right

● C3:

Texting left

● C4:

Talking left

● C6:

Drinking

Action classes cont.

● C5:

Operating

radio

● C7:

Reaching

back

● C8:

Hair and makeup

Action classes cont.

● C9:

Talking to
passenger

Neural networks

• One node with

sigmoid activation

= logistic regression

• Many nodes/layers → learns complex input/output
relations with cheap operations

Demo2: Link

[2]: Tensorflow Playground: http://playground.tensorflow.org/

http://playground.tensorflow.org/#activation=relu&batchSize=30&dataset=spiral®Dataset=reg-plane&learningRate=0.1®ularizationRate=0&noise=0&networkShape=6,6,6&seed=0.51056&showTestData=false&discretize=false&percTrainData=80&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification

ConvNets

• Convolution (”faltning”)
– Fourier/Laplace transform

– Image analysis

– Signal Processing

• Filter on images

• Ex:
– Gaussian Blur

– Sharpening

– Edge detection

• ConvNets include convolutional layers

Sharpening filter

Deep ConvNet, VGG163

• 16 conv. Layers + 4 fully connected (”normal”) layers

• > 138 million parameters

• 2-3 weeks to train on

ImageNet database

• 1.3 million images

from 1000 classes

VGG16 architecture

[3]: VGG-16 network [http://arxiv.org/abs/1409.1556]

VGG16 Demo

• Giant Panda image from

Hong Kong Zoo

• VGG16 gives output:

• 99.9999% confidence in class 388:
giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca

● Use pre-trained VGG16 to
extract feature-vectors from
images

● Use first layer after the
convolutions, produces
4096-dimensional vector

● Every image takes 0.5s to
process → ~20h on laptop

Back to the drivers!

● Seperability of classes

● Mean output over different
classes

● Seemed to show good
variability → good chance of
seperation

● Promising!

Will it work?

Max
activations
Class 0

Max
activations
Class 9

● Many similar
images taken within
short timeframes →
prone to overfitting

● Seperate persons
in train and test set

● Network learned
person-specifics →
bad results on test!

Classification challenges

Two similar images from C0: safe driving

● To recieve accurate test
evaluations, cross-validation is
required

● 26 different persons in train set

● Split my training set into 5 folds
with 5 persons held out from
training

Labelled cross-validation

● Now I had a:

– train matrix 22424 x 4096

– test matrix 79726 x 4096

● Many approaches to classification:

– Support vector machine

– Logistic regression

– Random forest

– Decision Trees

– Gradient Boosting

● SVM and Log.Reg produced best res.
(implemented in scikit-learn)

Classification

● Using the entire 4096 feature vector
for every image (testing took time!)

● Regularization:

– Prevents overfitting by limiting size
of weights

– An additional hyperparameter to
optimize

● Finding the right hyperparameters
using cross-validation

Training

Train (blue) and validation
(red) acc. (top) and logloss
(bottom)

● 60-65% accuracy, 1.10 logloss →
~250 on current leaderboards

● Wanted less features per image

● Reduces training time – more time to
optimize hyperparameters

● Finding the ”right” features for my specific
task will greatly prevent overfitting

Improvements

● Which features were the most important

● Removing features that coded for person-
specifics

● Ended up with 887 feature vector → much
faster training/testing and easier on the
memory

Dimensionality reduction

● Over 80% accuracy and <0.60 logloss on cross-
validation!

● Sadly nowhere close to <0.2 logloss (top of LB) :(

Final Results

Thanks!

● Dennis Medved

● Pierre Nugues

● Magnus Oskarsson

● Have a great summer!

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21

