

Classification of hotels for Expedia.

PROJECT IN ARTIFICIAL INTELLIGENCE - EDAN70

Introduction

- Who we are.
- Kaggle.com
- Our main problem. Expedia
- Random Forest Classifier.
- Expedia and workflow.
- Conclusions.

- Users from all over the world compete to produce the best machine learning models.
- Submissions, Scripts, Leaderboards.

Expedia

• The problem – Expedia.

Tools

- Python 64-bit
- Alot of RAM
- Pandas parsing data into data structures
- NumPy scientific computing package
- Scikit learn Machine Learning library, built on SciPy, NumPy and matplotlib pandas $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

Expedia - dataset

- 24 column in training
- 22 column in testing (no is_booking, no hotel_cluster)
- Most of the columns are integers or floats
- Output hotel cluster ID integer range from 1-99

	date_time	site_name	posa_continent	user_location_country	user_location_region	user_location_city	
(2014-08-11 07:46:59	2	3	66	348	48862	
1	2014-08-11 08:22:12	2	3	66	348	48862	
2	2014-08-11 08:24:33	2	3	66	348	48862	
3	2014-08-09 18:05:16	2	3	66	442	35390	
4	2014-08-09 18:08:18	2	3	66	442	35390	

Expedia - workflow

- Understanding dataset
- Expedia

Going to						
9	City, airport, landmark, or address					

srch_destination_type_id, hotel_continent, hotel_country, and hotel_market

srch_ci srch_co are filled with dates
srch_adults_cnt, srch_children_cnt, and srch_rm_cnt is number of guests and rooms

Add a flight maps to the is_package field

site_name – Expedia point of sale (Expedia.com, Expedia.se, ...) posa continent – ID of continent associated with site name

UNIVERSITY

Expedia – Hotel Clusters

Filter hotels by

NEW! Free Cancellation

Hotel Class

- ★★★★★ 5 Stars (1)
- ★★★★ 4 Stars (5)
- □ ★★★ 3 Stars (64)
- ★★ 2 Stars (31)
- 🗆 ★ 1 Star (1)

Price Per Night

- Less than \$75 (14)
- 🗆 \$75 to \$124 (10)
- 🗆 \$125 to \$199 (0)
- \$200 to \$299 (0)
- Greater than \$300 (0)

Neighborhood

- Ho Chi Minh City (and vicinity)
- Ben Thanh Market
- Bui Thi Xuan
- Conculate Area

Property Type

- Hotel (100)
- Apartment (1)
- Apart-hotel (1)

Meal Plans

- All Inclusive
- Breakfast
- E Full Board
- Half Board

Amenities

- High-speed Internet (102)
- Air conditioning (98)
- Swimming pool (5)
- Babysitting service (6)
- Business services (50)

Show more

Accessibility

- Accessible bathroom (10)
- In-room accessibility (11)

Useful! Expedia can much quickier at an earlier stage filter the hotels

HOTEL

< \$60 / night

HOTEL

Expedia – most frequent hotel clusters

\$46841W95521674874 www.comestatates.comes

Expedia – examining features

• What are the most countries the customer travel from/to?

• Nights of stay

Random Forest Classifier

- Supervised learning classifier Uses bagging methods.
- Random sub-samples.
- Generates decision trees on each sub-sample.

Random Forest Classifier

- Sum all the decision trees.
- Mistakes are taken care of.
- The classifier corrects decision trees habit of overfitting to their training set.

Random Forest Classifier

- Why does Random Forest work?
- 1. Most trees provide correct predicition for the most part of the data.
- 2. Trees make mistake at different place.

Expedia – How good is the classifer?

- We predict 5 hotel clusters for each sample in test.csv
- The evaluation function is Mean Average Precision @ 5

$$MAP@5 = rac{1}{|U|} \sum_{u=1}^{|U|} \sum_{k=1}^{min(5,n)} P(k)$$

where |U| is the number of user events, P(k) is the precision at cutoff k, n is the number of predicted hotel clusters.

Test0: Truth is 1, Predicted [1,2,3,4,5] => Average precision = 1

Test1 : Truth is 2, Predicted $[1,2,3,4,5] \Rightarrow$ Average precision $=\frac{1}{2}$ Mea Test2 : Truth is 5, Predicted $[1,2,3,4,5] \Rightarrow$ Average precision $=\frac{1}{5}$ Test3 : Truth is 6, Predicted $[1,2,3,4,5] \Rightarrow$ Average precision $=\frac{1}{5}$ Test3 : Truth is 6, Predicted $[1,2,3,4,5] \Rightarrow$ Average precision =0

Mean average precision = 0.425

Expedia – How good is the classifer?

• k-fold cross-validation for model tuning

• We could more easily tune the model with a Grid Search for the best parameters

Expedia - Results

• Results with Random Forest classifier:

0.18584

• Results with most popular local hotels:

0.30090

Leakage

 user_location_country, user_location_region, user_location_city, hotel_market and orig_destination_distance

Leakage - Results

• Using a more advanced approach with most popular hotels and leakage we got:

0.50050

Expedia - Conclusion

- Machine learning can be used in real-life situations to optimize a product or service
- It is very important to not leak training examples into the test set because the model will overfit
- Here the best model will have to find the leak (1/3) and train itself to catch the rest of the holdout data (2/3)

LUND UNIVERSITY