Using sentiment analysis for stock market prediction

BIRGER KLEVE
Project Goals

- Increase Machine Learning knowledge
 - Learning real world practice
 - Facing real world problems
 - Optimize algorithm parameters
Project Definition

Hypothesis:
There is a correlation between tweet sentiment from certain people and a stocks movement.

System:
1. Find tweets mentioning stocks
2. Classify sentiment of the tweet
3. Predict stock movement by processing stock data and tweet sentiment
Availability of Financial data on Twitter
Project Redefinition

• Drop the financial aspect of the project and only focus on the sentiment of tweets
Sentiment Analysis

• Keyword spotting
 – E.g. Happy, sad, bored
• Lexical affinity
 – Affinity (swe: samhörighet) to a certain probability of polarity
• Statistical methods
• Concept-level techniques
 – Semantic analysis of text

Cambria, E. An introduction to Concept-Level Sentiment Analysis. National University of Singapore
Pang & Lee

- Thumbs up? 2002
- Movie reviews
- Presence of Unigram + Bigram w/ negation

Social Media Features

- Words entirely in caps
- Prolonged words like angreyyyyy
- Positive/negative emoticons
- Amount of hashtags

- Frequency of different POS tags
Sentiment lexicon

• Look up each word in a sentiment lexicon.
• Lexical affinity
• Use Features:
 – Highest score
 – Total score
 – Mean score
Tokenization and negation

• Change usernames, URLs, hashtags etc. into normalized tokens

• Tag certain words with negation. E.g.
 "This horse is not that bad" => "This horse is not that_NOT bad_NOT"
 "not quite as great" => "not quite_NOT as great"

• Use the presence of each unigram as a feature
Classifier

- SVM with Linear kernel
- Parameters: C
Training

• Tokenize and collect each unique word in the training data and save it as a vocabulary.

• Fit SVM to the entire training set

• Optimizing parameter C
 – 3-fold Cross Validation
 – Grid Search
 – Test the final classifier against a separate test set
Data

• Training set 1 600 000 automatic classified tweets
 – w/ Keyword search
 – 2 classes: Negative & Positive

• Test set 357 manually classified tweets

• Sentiment lexicons:
 – Lexical affinity

Result

Tweet:
I'm so happy today

Linear SVM polarity classification: Positive

Train
Test
Classify
Result

![Image of a GUI window showing a tweet and SVM classification result]

Tweet: Apples new products sucks. :(

Linear SVM polarity classification: Negative
Result

Tweet:
The weather is really weird today.
But I like it.

Linear SVM polarity classification: Negative

Train
Test
Classify
Result

- Using 1.6% of the training data (25600 samples):
 - 54981 features
 - > 12 hours of optimizing
 » DNF
 - 1 hour final training
 - Sparse features => enormous RAM allocation
Result

- Human test: ~80%
- Expected: close to 79%
- My baseline: ~65%
- My Improved: ~75%
 - Might be higher
Tools

- Python’s Scikit-learn
- NLTK – for POS tagging (as features and to negate context)
What I have learned

- Pitfalls of data collection
- Handling LARGE amount of data
- Using popular machine learning tools
- (SVM, its kernels and their parameters)